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Abstract

Mukhtar M. Ali has made many innovative and influential contributions in different

areas of economics, finance, econometrics, and statistics. His contributions include developing

econometric models to examine the determinants of the demand for casino gaming, investigating

the approximate and exact distribution and moments of various econometric estimators and

test statistics, and studying the statistical properties of time series based statistics under

stationary and non-stationary processes (for example, see Ali and Thalheimer (1983, 2008),

Ali (1977, 1979, 1984, 1989), Ali and Sharma (1993, 1996), Tsui and Ali (1992, 2002), Ali

and Giaccotto (1982a, 1982b, 1984), Ali and Tiao (1971), and Ali and Silver (1985, 1989),

among others). All of these have made significant impact on the profession and have been

instrumental in advancing further research in statistics and econometrics. In this paper, we

study the approximate first two moments of two weighted average estimators of the slope

parameters in linear panel data models. The weighted average estimators shrink a generalized

least squares estimator towards a restricted generalized least squares estimator, where the

restrictions represent possible parameter specifications. The averaging weight is inversely

proportional to a weighted quadratic loss function. The approximate bias and second moment

matrix of the weighted average estimators using the large-sample approximations are provided.

We give the conditions under which the weighted average estimators dominate the generalized

least squares estimator on the basis of their mean squared errors.

Key Words: Asymptotic approximations; fixed-effects; panel data; random-effects; Stein-like

shrinkage estimator.

AMS Subject Classification: 62J12, 62P20

1 Introduction

Estimation and forecasting under model uncertainty has been one of the fundamental issues in

econometrics. In recent years, a large body of literature has been concerned with advancing a

number of different approaches to overcome a variety of model uncertainty problems. The two

most common approaches are model selection and model averaging. Model selection aims to find,

among the set of models under consideration, the best approximate model for the unknown true
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data generating process. In this method, investigators typically first select the best performing

model based on diagnostic tests (like Wald, F, t-ratios, R-squared, information criteria, etc.) and

then carry out inference according to the selected model. This popular approach (also known as

“pre-testing”) is subject to many problems (Magnus (1999); Magnus and Durbin (1999); Danilov

and Magnus (2004a, 2004b)). The most important problem is that the model selection and

estimation are completely separated such that the uncertainty of the initial model selection step

is ignored throughout the parameter estimation and inference, see for example Magnus (2002)

and Leeb and Pötscher (2003, 2006), among others, who show the initial model selection step

may have non-negligible effects on the statistical properties of the resulting estimators. Taking

the above problems into consideration, model averaging is introduced as an alternative to model

selection. In model averaging, the uncertainty is addressed by averaging (weighted) over the set

of candidate models. However, one of the challenges of this method is how to assign weights to

different candidates to minimize a specific loss function.

This paper investigates two weighted average estimation methods in linear panel data models to

deal with uncertainty issues about the slope parameters. The weighted average estimators shrink a

feasible generalized least-squares (FGLS) estimator towards a shrinkage direction, or equivalently

a set of parameter restrictions. The restrictions are not necessarily believed to be true, but instead

represent a belief about where the parameters of the model are likely to be close. Therefore,

the proposed estimator is a weighted average of the FGLS estimator and a feasible restricted

generalized least-squares estimator that belongs to the restricted parameter space. The shrinkage

weight is inversely related to a weighted loss statistic that measures the weighted distance of the

FGLS estimator and the restricted estimator. To evaluate our proposed estimators, we derive

higher order approximations of the bias and mean squared error (MSE) of our proposed estimator

using Nagar (1959) large sample approximations. Furthermore, we show the dominance properties

of our weighted average estimators in terms of risk, which ensures that our proposed estimators are

robust against arbitrary deviations from the restrictions.

The literature on weighted average estimation is substantial, which mainly was initiated by a

seminal paper by Stein (1956). In that paper, Stein showed that the maximum likelihood estimator

(MLE) for the mean of a multivariate normal distribution is inadmissible. This means that it is

possible to construct an estimator with smaller risk than the MLE for the entire parameter space.

James and Stein (1961) exhibited an estimator whose risk is uniformly smaller than that of the

MLE. Paradoxically, the James-Stein estimator is itself inadmissible and can be dominated by

another inadmissible estimate like its positive part (Baranchick (1964)). Judge and Bock (1978)

and Ullah and Ullah (1978) developed this method for most of econometric estimators. Recently,

Mehrabani and Ullah (2020), Hansen (2016) and Maddala et al. (2001) use weighted average

estimation methods to deal with model uncertainty between two candidate models in seemingly

unrelated regressions, cross-sectional models, and heterogenous panel data, respectively. See also

Lee et al. (2021) who utilize weighted average estimation in structural breaks.

The paper is organized as follows. Sections 2 and 3 describe the model and the estimators. We

give the analytical bias, mean squared error matrix and the risk of the weighted average estimators
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using the large-sample approximations in section 4. Monte Carlo experiments are presented in

Section 5 to study the finite sample performance of our proposed estimators. Section 6 contains

some concluding remarks, and proofs are given in Appendix A.

Notation: Throughout the paper, we adopt the following notation. For an m × n real matrix

A we write the transpose A′. When A is symmetric, we use λmax(A) and λmin(A) to denote the

largest and smallest eigenvalues, respectively. Ip and 0p×q denote the p × p identity matrix and

p× q matrix of zeros.

2 The Model and Assumptions

Consider the following linear panel data model

yit = αi + x′itβ + uit, i = 1, . . . , N, and t = 1, . . . , T, (2.1)

where yit is the dependent variable, xit = (xit,1, . . . , xit,k)
′ is a k× 1 vector of exogenous regressors

for unit i, and uit is the unobserved error term, where T is the time dimension, and N is the

cross-section dimension. β is a k × 1 vector of common unknown slope coefficients of interest, and

αi is the individual effect (fixed effect or random effect).

Stacking the observations over t, we can express the model in (2.1) as

yi = αi ιT +Xiβ + ui, i = 1, . . . , N, (2.2)

where yi = (yi1, . . . , yiT )′ is a T × 1 vector of observations on the dependent variable, Xi =

(xi1, . . . , xiT )′ is a T × k matrix of observations on the regressors, ui = (ui1, . . . , uiT )′ is a T × 1

vector of disturbances for i = 1, . . . , N , and ιT is a T × 1 vector of ones. In a matrix form, we can

write the model as

y = Dα+Xβ + u, (2.3)

where y = (y′1, . . . , y
′
N )′, u = (u′1, . . . , u

′
N )′, X = (X ′1, . . . , X

′
N )′, α = (α1, . . . , αN )′, and D = IN⊗ιT

is a matrix of NT ×N.
We make the following assumptions.

Assumption 1: The disturbances are normally distributed and for all i, j = 1, . . . , N,

(i) E(ui) = 0.

(ii) E(ui u
′
j) =

σ2IT , if i = j,

0, otherwise.

Assumption 2: The matrix of regressors X, which is of order NT × k has full column rank and

consists of non-stochastic elements.

Assumption 3: The individual effects, αi, follow one of the followings
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(a) Fixed Effects Model: they are constant terms.

(b) Random Effects Model: they are normally distributed and for all i, j = 1, . . . , N , and t =

1, . . . , T,

(i) E(αi) = 0,

(ii) E(αiuit) = 0,

(iii) E(αi α
′
j) =

σ2α, if i = j,

0, otherwise.

3 Estimators

Our goal is to estimate the vector of slope parameters, β, in equation (2.1). We consider four

estimators of the slope parameters: i) an unrestricted generalized least squares estimator, ii)

a restricted generalized least squares estimator that shrinks the unrestrictive estimator towards

a restricted parameters space, iii) a Stein-like weighted average estimator which is a weighted

averages of the restricted and the unrestricted estimators where the weights are proportional to a

weighted quadratic loss function, and iv) a weighted average minimal mean squared error (MMSE)

estimator which is a weighted average of the restricted and the unrestricted estimators where the

weights are derived by minimizing the risk.

We will examine the estimators for fixed effects and random effects models separately.

3.1 Fixed Effects Models

Since the individual effects, αi’s, are not our primary interest, we concentrate them out and obtain

the following regression model from the model in (2.1)

ỹi = X̃iβ + ũi, for i = 1, . . . , N, (3.1)

where for example ỹi = MιT yi = (ỹi1, . . . , ỹiT )′, MιT = IT − ιT (ιT
′ιT )−1ιT

′, therefore ỹit = yit −
T−1

∑T
t=1 yit. It is convenient to stack the N equations above in the following form

ỹ = X̃β + ũ, (3.2)

where ỹ = (ỹ′1, . . . , ỹ
′
N )′, ũ = (ũ′1, . . . , ũ

′
N )′, X̃ = (X̃ ′1, . . . , X̃

′
N )′, and for example ỹ = MDy, and

MD = (IN ⊗MιT ) = INT −D(D′D)−1D′ which is an idempotent matrix.
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Unrestricted Estimator

The typical estimator for the slope parameters in fixed effects models is a least squares estimator1

defined as

β̂ = (X̃ ′X̃)−1X̃ ′ỹ = β + (X̃ ′X̃)−1X̃ ′ũ. (3.3)

Restricted Estimator

Because of a belief that the true parameter values may be close to a restricted parameter space

Θ0 = {β ∈ Rk : r(β) = 0} where r(β) = Rβ : Rk → Rq, we want to shrink β̂ towards the

restriction space Θ0. The purpose of the restrictions can be a model specification, a structural

model, a set of exclusion restrictions, or any other restrictions that are often tested by means of

hypothesis testing to improve the estimation efficiency.

Hence, we can derive the restricted estimator from the following minimization

Minimize
β

(ỹ − X̃β)′(ỹ − X̃β), subject to Rβ = 0.

The solution to the above minimization can be formulated as a restricted least squares estimator

β̃ = β̂ − (X̃ ′X̃)−1R′
[
R(X̃ ′X̃)−1R′

]−1
Rβ̂ = (Ik − P̃ )β̂, (3.4)

where P̃ = (X̃ ′X̃)−1R′
[
R(X̃ ′X̃)−1R′

]−1
R.

Remark 1: A restricted parameter space, Θ0, which is common in applied economics will take

the form of an exclusion restriction. For example, if we partition

β =

[
βc

βa

]
, (3.5)

where βc, (k− q)× 1, represents the slopes of the core regressors, and βa, q× 1, includes the slopes

of included auxiliary regressors that are included in the model for robustness but may or may not

be included in the model. Therefore, an exclusion restriction takes the form

Rβ =
[
0q×(k−q) Iq

]
β = βa = 0, (3.6)

where the restriction sets the last q slope parameters equal to zero.

1We note that under Assumption 1 since the errors are homoscedastic and uncorrelated, the least squares estimator
is identical to the generalized least squares estimator.
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Weighted Average Estimators

We define the Stein-like weighted average estimator as

β̂A = (1− τ

D̂
) β̂ +

τ

D̂
β̃, (3.7)

and the weighted average MMSE estimator 2 as below

β̂M = (1− µ̂

D̂
) β̂ +

µ̂

D̂
β̃, (3.8)

where D̂ is a weighted quadratic loss function defined as

D̂ = (β̂ − β̃)′W (β̂ − β̃), (3.9)

and W is an arbitrary symmetric positive definite weight matrix with elements of order O(NT ),

µ̂ = tr
(
σ̂2P̃ (X̃ ′X̃)−1W

)
, where σ̂2 = ũ′M

X̃
ũ/(NT − N − k), M

X̃
= INT − X̃(X̃ ′X̃)−1X̃ ′, and

τ is a positive characterizing parameter. We will defer describing the optimal choice of τ in the

next section. It is worth mentioning that, the weighted average estimators are similar and the only

difference is in the characterizing parameters. The Stein-like weighted average estimator leaves the

characterizing parameter user-specified that can be determined by minimizing a statistic. However,

the weighted average MMSE has a specific form for the characterizing parameter that is determined

by minimizing the risk.

The idea behind the weighted average estimators defined above is that when the difference

between the restricted and the unrestricted estimators is small (D̂ is small), the weighted average

estimators give higher weights to the restricted estimator, as it is the most efficient estimator.

However, when the difference between the restricted and the unrestricted estimators is substantial,

the bias of the restricted estimator, which is caused by imposing the parameter restrictions, can be

more than its variance efficiency gain, so the weighted average estimators assign higher weights to

the unrestricted estimator.

2Consider the class of estimators β̂M = ωβ̂ + (1 − ω)β̃, where ω is a scalar. Then the risk associated with this
estimator is

Risk(β̂M ) = E(β̂M − β)′W (β̂M − β) = ω2 Risk(β̂) + (1− ω)2 Risk(β̃) + 2ω(1− ω)E(β̂ − β)′W (β̃ − β).

The value of ω that minimizes the above risk, say ω∗ is

ω∗ =
tr
(
σ2P̃ (X̃ ′X̃)−1W

)
Risk(β̂M )

,

which can be approximated by ω̂ = tr
(
σ̂2P̃ (X̃ ′X̃)−1W

)
/D̂.
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3.2 Random Effects Models

In the random effects case, we can write the model in (2.1) as below

yi = Xiβ + εi, (3.10)

where the error term εi = (εi1, . . . , εit)
′ consists of the time-invariant random effects, αi, and the

random component ui. Under Assumption 3(b), the variance-covariance matrix of ε is equal to

Ω̄ = σ2(MD + λ−1ZD) ≡ σ2Ω, where λ = σ2/σ2η, σ
2
η = σ2 + Tσ2α, and ZD = D(D′D)−1D′. Ω can

be estimated by replacing λ with λ̂ = σ̂2/σ̂2η, where

σ̂2 =
u′(MD −MDX(X ′MDX)−1X ′MD)u

N(T − 1)− k
, (3.11)

σ̂2η =
ε′
[
ZD − ZDX

(
X ′ZDX

)−1
X ′ZD

]
ε

N − k
. (3.12)

Hence, Ω̂ = MD + λ̂−1ZD is an estimator of Ω.

Unrestricted Estimator

The typical estimator for the slope parameters in random effects models is a feasible generalized

least squares (GLS) estimator defined as

β̂ = (X ′Ω̂−1X)−1X ′Ω̂−1y = β + (X ′Ω̂−1X)−1X ′Ω̂−1ε, (3.13)

where Ω̂ is the estimator of Ω.

Restricted Estimator

Because of a belief that the true parameter values may be close to a restricted parameter space

Θ0 = {β ∈ Rk : r(β) = 0} where r(β) = Rβ : Rk → Rq, we want to shrink β̂ towards the

restriction space Θ0. The purpose of the restrictions can be a model specification, a structural

model, a set of exclusion restrictions, or any other restrictions that are often tested by means of

hypothesis testing to improve the estimation efficiency.

Hence, we can derive the restricted estimator from the following minimization

Minimize
β

(y −Xβ)′Ω̄−1(y −Xβ), subject to Rβ = 0.

The solution to the above minimization can be formulated as a feasible restricted GLS estimator

β̃ = β̂ − (X ′Ω̂−1X)−1R′
[
R(X ′Ω̂−1X)−1R′

]−1
Rβ̂ = (Ik − P̂ )β̂, (3.14)

where P̂ = (X ′Ω̂−1X)−1R′
[
R(X ′Ω̂−1X)−1R′

]−1
R.
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Weighted Average Estimators

We define the Stein-like weighted average estimator as below

β̂A = (1− τ

D̂
) β̂ +

τ

D̂
β̃, (3.15)

and the weighted average MMSE estimator as below

β̂M = (1− µ̂

D̂
) β̂ +

µ̂

D̂
β̃, (3.16)

where D̂ is a weighted quadratic loss function defined as

D̂ = (β̂ − β̃)′W (β̂ − β̃), (3.17)

and W is an arbitrary symmetric positive definite weight matrix with elements of order O(NT ),

µ̂ = tr
(
σ̂2P̂ (X ′Ω̂−1X)−1W

)
and τ is a positive characterizing parameter. We will defer describing

the optimal choice for τ in the next section.

4 Large-Sample Approximate Bias and MSE

We employ the large-sample approximations method developed by Nagar (1959), to analyze the

bias, mean squared error matrices (MSEM), and risks of the weighted average estimators for the

fixed effects and the random effects models.

4.1 Fixed Effects Models

In the fixed effects case where the individual effects are constant terms, the unrestricted estimator

is unbiased and we have

Bias(β̂) = E(β̂ − β) = 0, (4.1)

MSEM(β̂) = E(β̂ − β)(β̂ − β)′ = σ2(X̃ ′X̃)−1, (4.2)

Risk(β̂) = E(β̂ − β)′W (β̂ − β) = σ2 tr
(

(X̃ ′X̃)−1W
)
, (4.3)

Theorem 1: Under Assumptions 1, 2, and 3(a), the bias of the Stein-like weighted average

estimator up to order O((NT )−1) is

Bias(β̂A) = E(β̂A − β) = − τ
φ̃
P̃ β, (4.4)
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and the MSEM of the Stein-like weighted average estimator up to order O((NT )−2) is

MSEM(β̂A) = E
[
(β̂A − β)(β̂A − β)′

]
= MSEM(β̂) +

τ2

φ̃2
P̃ ββ′P̃ ′ − 2τ

φ̃
σ2P̃ (X̃ ′X̃)−1P̃ ′

+
2τ

φ̃2
σ2
[
P̃ ββ′P̃ ′WP̃ (X̃ ′X̃)−1P̃ ′ + P̃ (X̃ ′X̃)−1P̃ ′WP̃ββ′P̃ ′

]
, (4.5)

and for the symmetric positive definite weight matrix W of order O(NT ), the risk of the weighted

average estimator up to order O((NT )−1) is

Risk(β̂A) = E
[
(β̂A − β)′W (β̂A − β)

]
= Risk(β̂) +

τ

φ̃

[
τ − 2

[
tr(C̃)− 2

φ̃c

φ̃

]]
, (4.6)

where C̃ = σ2W 1/2P̃ (X̃ ′X̃)−1P̃ ′W 1/2, φ̃ = β′P̃ ′WP̃β = O(NT ), and φ̃c = β′P̃ ′W 1/2C̃W 1/2P̃ β =

O(NT ).

Proof: Appendix A (See page 21).

From Theorem 1, it follows that the Stein-like weighted average estimator dominates the

unrestricted estimator in terms of having a smaller risk, when the second term on the right-hand

side of equation (4.6) is negative, which holds when

0 < τ < 2
[

tr(C̃)− 2
φ̃c

φ̃

]
, (4.7)

given the term in the square bracket is positive. Therefore, when τ satisfies the condition (4.7), the

risk of the Stein-like weighted average estimator is less than the risk of the unrestricted estimator up

to the order of interest. In addition, as the choice of the characteristic parameter is user-specified,

its optimal value, τopt, that minimizes the risk of the Stein-like weighted average estimator up to

order O((NT )−1), is

τopt = tr(C̃)− 2
φ̃c

φ̃
, (4.8)

since φ̃c/φ̃ depends on the unknown slope coefficients, one can replace it with its supremum value

which is equal to λmax(C̃) 3.

Theorem 2: Under Assumptions 1, 2, and 3(a), the bias of the weighted average MMSE estimator

3The inequality holds by noting that for any symmetric n× n matrix Q, we have

λmin(Q) ≤ θ′Qθ

θ′θ
≤ λmax(Q),

see Abadir and Magnus (2005), pages 181-182.
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up to order O((NT )−1) is

Bias(β̂M ) = E(β̂M − β) = − tr(C̃)

φ̃
P̃ β, (4.9)

and the MSEM of the estimator up to order O((NT )−2) is

MSEM(β̂M ) = E
[
(β̂M − β)(β̂M − β)′

]
= MSEM(β̂) +

tr(C̃)2

φ̃2
P̃ ββ′P̃ ′ − 2 tr(C̃)

φ̃
σ2P̃ (X̃ ′X̃)−1P̃ ′

+
2 tr(C̃)

φ̃2
σ2
[
P̃ ββ′P̃ ′WP̃ (X̃ ′X̃)−1P̃ ′ + P̃ (X̃ ′X)−1P̃ ′WP̃ββ′P̃ ′

]
, (4.10)

and for the symmetric positive definite weight matrix W of order O(NT ), the risk of the estimator

up to order O((NT )−1) is

Risk(β̂M ) = E
[
(β̂M − β)′W (β̂M − β)

]
= Risk(β̂)− tr(C̃)

φ̃

[
tr(C̃)− 4

φ̃c

φ̃

]
. (4.11)

Proof: Appendix A (See page 24).

From Theorem 2, it follows that the weighted average MMSE estimator dominates the

unrestricted estimator in terms of having a smaller risk, when the second term on the right-hand

side of equation (4.11) is negative, which holds when

tr(C̃) > 4
φ̃c

φ̃
.

Since the condition above depends on the slope parameters, it can be replaced with tr(C̃) >

4λmax(C̃).

Furthermore, comparing the two weighted average estimators, it is clear that the dominance

condition of the Stein-like weighted average estimator (tr(C̃) > 2λmax(C̃)) is weaker than the

dominance condition for the weighted average MMSE estimator (tr(C̃) > 4λmax(C̃).) Moreover,

the risk of the Stein-like weighted average estimator using the optimal τopt, is smaller than the risk

of the weighted average MMSE estimator.

4.2 Random Effects Models

In case the individual effects are random, the large-N (fixed T ) approximate bias and MSEM of

the unrestricted feasible GLS estimator up to order O(N−1), and O(N−2) respectively, are derived

in Ullah and Huang (2006), which are equal to

Bias(β̂) = E(β̂ − β) = 0, (4.12)
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MSEM(β̂) = E(β̂ − β)(β̂ − β)′ = σ2(X ′Ω−1X)−1 +
2λσ2T

N(T − 1)
Λ1, (4.13)

Risk(β̂) = E(β̂ − β)′W (β̂ − β) = σ2 tr(W (X ′Ω−1X)−1) +
2λσ2T

N(T − 1)
tr(WΛ1), (4.14)

where A = X ′Ω−1X, B = X ′ZDX, Λ1 = A−1(B − λBA−1B)A−1 = O(N−1).

Theorem 3: Under Assumptions 1, 2, and 3(b), the bias of the Stein-like weighted average up to

order O(N−1) is

Bias(β̂A) = E(β̂A − β) = − τ
φ
Pβ, (4.15)

and the MSEM of the average estimator up to order O(N−2) is

MSEM(β̂A) = E
[
(β̂A − β)(β̂A − β)′

]
= MSEM(β̂) +

τ2

φ2
Pββ′P ′ − 2τ

φ
σ2P (X ′Ω−1X)−1P ′

+
2τ

φ2
σ2
{
Pββ′P ′WP (X ′Ω−1X)−1P ′ + P (X ′Ω−1X)−1P ′WPββ′P ′

}
, (4.16)

and for the symmetric positive definite weight matrix W of order O(N), the risk of the Stein-like

weighted average estimator up to order O(N−1) is

Risk(β̂A) = E
[
(β̂A − β)′W (β̂A − β)

]
= Risk(β̂) +

τ

φ

[
τ − 2

[
tr(C)− 2

φ
φc

]]
(4.17)

where C = σ2W 1/2P (X ′Ω−1X)−1P ′W 1/2.

Proof: Appendix A (See page 26).

From Theorem 3, it follows that the Stein-like weighted average estimator dominates the

unrestricted estimator in terms of having a smaller risk, when the second term on the right-hand

side of equation (4.17) is negative, which holds when

0 < τ < 2
[

tr(C)− 2

φ
φc

]
, (4.18)

given the term in the bracket is positive. Therefore, when τ satisfies the condition (4.18), the risk

of the Stein-like weighted average estimator is less than the risk of the unrestricted estimator up

to the order of interest. In addition, as the choice of the characteristic parameter is user-specified,

its optimal value, τopt, that minimizes the risk of the Stein-like weighted average estimator up to

order O(N−1), is

τopt = tr(C)− 2

φ
φc. (4.19)

Further, since φc/φ depends on the unknown slope coefficients, one can replace it with its supremum
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value which is equal to λmax(C).

Theorem 4: Under Assumptions 1, 2, and 3(b), the bias of the weighted average MMSE estimator

up to order O(N−1) is

Bias(β̂M ) = E(β̂M − β) = − tr(C)

φ
Pβ, (4.20)

and the MSEM of the estimator up to order O(N−2) is

MSEM(β̂M ) = E
[
(β̂M − β)(β̂M − β)′

]
= MSEM(β̂) +

tr(C)2

φ2
Pββ′P ′ − 2 tr(C)

φ
σ2P (X ′Ω−1X)−1P ′

+
2 tr(C)

φ2
σ2
{
Pββ′P ′WP (X ′Ω−1X)−1P ′ + P (X ′Ω−1X)−1P ′WPββ′P ′

}
, (4.21)

and for the symmetric positive definite weight matrix W of order O(N), the risk of the estimator

up to order O(N−1) is

Risk(β̂M ) = E
[
(β̂M − β)′W (β̂M − β)

]
= Risk(β̂)− tr(C)

φ

[
tr(C)− 4

φ
φc

]
. (4.22)

Proof: Appendix A (See page 30).

From Theorem 4, it follows that the weighted average MMSE estimator dominates the

unrestricted estimator in terms of having a smaller risk, when the second term on the right-hand

side of equation (4.22) is negative, which holds when

tr(C) > 4
φc
φ
.

Since the condition above depends on the slope parameters, it can be replaced with tr(C) >

4λmax(C).

Furthermore, comparing the two weighted average estimators, it is clear that the dominance

condition of the Stein-like weighted average estimator (tr(C) > 2λmax(C)) is weaker than the

dominance condition for the weighted average MMSE estimator (tr(C) > 4λmax(C).) Moreover,

the risk of the Stein-like weighted average estimator using the optimal τopt, is smaller than the risk

of the weighted average MMSE estimator.

5 Monte Carlo Simulation

In this section, we investigate the finite sample mean squared error of the Stein-like weighted

average and the weighted average MMSE estimator via Monte Carlo experiments.

12



We consider the following data-generating process

yit = αi + x′itβ + uit,

where uit is i.i.d. N(0,1), αi is i.i.d. N(0,1). The regressors are generated for fixed effects as xit =

vit + 0.2αi, and for random effects case as xit = vit, and vit = (v1,it, . . . , vk,it)
′ ∼ N(0,Σ), where

the diagonal elements of Σ are σ2v and off-diagonal elements are ρσ2v , and we set σ2v = 0.1. The

number of regressors is k = 6 with two core regressors and four auxiliary regressors. The regression

coefficients are determined by the rule

β = c

(
1

4
,
1

4
,

1√
NT

(
1,
q − 1

q
, . . . ,

1

q

))′
,

where q is the number of auxiliary regressors. The parameter c is selected to control the population

R2, and R2 varies on a grid between 0.1 and 0.9.

We consider four estimators for each fixed effects and random effects model: (1) the unrestricted

estimator, (2) the restricted estimator where the restriction matrix follows the form of the restriction

matrix in Remark 1 with q = 4, (3) the Stein-like weighted average estimator, (4) the weighted

average MMSE estimator. Our parameters of interest are the slope parameters of the core regressors

(the first two slope parameters). To evaluate the performance of our proposed estimators, we

compute the risk based on the quadratic loss function. The risk (expected squared error) is

calculated by averaging across 1000 random samples. We report the normalized risk by dividing

the risk of each estimator by the risk of the unrestricted estimator in figures 1-5. The results show

the normalized risk for ρ = 0, 0.25, 0.5 in three panels for different N and T. It is clear that both

proposed estimators perform better than the unrestricted estimator over the whole range of R2,

which supports the theoretical findings of the previous section. The Stein-like weighted average

estimator and the weighted average MMSE estimator have similar performance for all values of ρ.

However, the weighted average MMSE estimator performs slightly better for small values of R2 and

the Stein-like weighted average estimator performs better for the rest. This is expected because

for small values of R2 the bias of the restricted estimator is very small, so it has a smaller risk

than the unrestricted estimator, and as the weighted average MMSE estimator assigns a larger

weight to the restricted estimator, initially it performs better and as the risk of the restricted

estimator increases, the risk of the weighted average MMSE estimator becomes slightly larger than

the Stein-like weighted average estimator. Furthermore, these figures show that the ranking of the

estimators is quite similar across different sample sizes (T ) and different number of cross-sections

(N).

13



(a) ρ = 0 (b) ρ = 0.25 (c) ρ = 0.5

Figure 1: Relative MSE of Unrestricted, Restricted, Averaging, and Combined MMSE Estimators,
for Fixed Effects model with T = 100, N = 100, k = 6, q = 4

(a) ρ = 0 (b) ρ = 0.25 (c) ρ = 0.5

Figure 2: Relative MSE of Unrestricted, Restricted, Averaging, and Combined MMSE Estimators,
for Fixed Effects model with T = 100, N = 50, k = 6, q = 4

(a) ρ = 0 (b) ρ = 0.25 (c) ρ = 0.5

Figure 3: Relative MSE of Unrestricted, Restricted, Averaging, and Combined MMSE Estimators,
for Fixed Effects model with T = 50, N = 100, k = 6, q = 4
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(a) ρ = 0 (b) ρ = 0.25 (c) ρ = 0.5

Figure 4: Relative MSE of Unrestricted, Restricted, Averaging, and Combined MMSE Estimators,
for Random Effects model with T = 20, N = 100, k = 6, q = 4

(a) ρ = 0 (b) ρ = 0.25 (c) ρ = 0.5

Figure 5: Relative MSE of Unrestricted, Restricted, Averaging, and Combined MMSE Estimators,
for Random Effects model with T = 20, N = 200, k = 6, q = 4
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6 Conclusions

In this paper, we introduce two weighted average estimators for estimating the slope parameters

in linear panel data models. The introduced estimators are weighed averages of an unrestricted

generalized least squares estimator, and a restricted generalized least squares estimator. The

weights are inversely related to a weighted quadratic loss function which measures the weighted

distance between the unrestricted and the restricted estimators. The analytical bias, MSE matrix,

and risk of the weighted average estimators using large-sample approximations of Nagar (1959)

are derived. The superiority conditions of the weighted average estimators in terms of the risk are

given for any user-specific symmetric positive definite weight matrix.
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A Appendix A

Lemma A.1: If ∆ = Ω̂− Ω = Op(n
−1/2), then we have the followings

Ω̂−1 = Ω−1︸︷︷︸
Op(1)

−Ω−1∆Ω−1︸ ︷︷ ︸
Op(n−1/2)

+ Ω−1∆Ω−1∆Ω−1︸ ︷︷ ︸
Op(n−1)

−Ω−1∆Ω−1∆Ω−1∆Ω−1︸ ︷︷ ︸
Op(n−3/2)

+Op(n
−2),

(A.1)

(X ′Ω̂−1X)−1 = (X ′Ω−1X)−1︸ ︷︷ ︸
Op(n−1)

+ (X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1︸ ︷︷ ︸
Op(n−3/2)

+ (X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1︸ ︷︷ ︸
Op(n−2)

− (X ′Ω−1X)−1X ′Ω−1∆Ω−1∆Ω−1X(X ′Ω−1X)−1︸ ︷︷ ︸
Op(n−2)

+Op(n
−5/2)

(A.2)

X ′Ω̂−1u = X ′Ω−1u︸ ︷︷ ︸
Op(n1/2)

−X ′Ω−1∆Ω−1u︸ ︷︷ ︸
Op(1)

+X ′Ω−1∆Ω−1∆Ω−1u︸ ︷︷ ︸
Op(n−1/2)

+Op(n
−1),

(A.3)

let P̂ = (X ′Ω̂−1X)−1R′
[
R(X ′Ω̂−1X)−1R′

]−1
R, then

P̂ = P + P−1/2 +Op(n
−1), (A.4)

where P−1/2 =
[
Ik−P

]
(X ′Ω−1X)−1X ′Ω−1∆Ω−1XP = Op(n

−1/2), and the suffixes show the order

of magnitude in probability.

Proof:

Using the standard geometric expansion for the inverse of a matrix 4, for large n, we have the

followings

Ω̂−1 = (Ω + ∆)−1 = Ω−1[In + ∆Ω−1]−1

= Ω−1
[
In −∆Ω−1 + ∆Ω−1∆Ω−1 −∆Ω−1∆Ω−1∆Ω−1 + ...

]
= Ω−1︸︷︷︸

Op(1)

−Ω−1∆Ω−1︸ ︷︷ ︸
Op(n−1/2)

+ Ω−1∆Ω−1∆Ω−1︸ ︷︷ ︸
Op(n−1)

−Ω−1∆Ω−1∆Ω−1∆Ω−1︸ ︷︷ ︸
Op(n−3/2)

+Op(n
−2),

which gives the results in equation (A.1). Now, by using equation (A.1), we have

(X ′Ω̂−1X)−1 =
[
X ′Ω−1X −X ′Ω−1∆Ω−1X +X ′Ω−1∆Ω−1∆Ω−1X + ...

]−1
= (X ′Ω−1X)−1

[
Ik −X ′Ω−1∆Ω−1X(X ′Ω−1X)−1 +X ′Ω−1∆Ω−1∆Ω−1X(X ′Ω−1X)−1 + ...

]−1
4(I +A)−1 = I −A+A2 −A3 + ... .
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= (X ′Ω−1X)−1︸ ︷︷ ︸
Op(n−1)

+ (X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1︸ ︷︷ ︸
Op(n−3/2)

+ (X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1︸ ︷︷ ︸
Op(n−2)

− (X ′Ω−1X)−1X ′Ω−1∆Ω−1∆Ω−1X(X ′Ω−1X)−1︸ ︷︷ ︸
Op(n−2)

+Op(n
−5/2),

also we have

X ′Ω̂−1u = X ′Ω−1u︸ ︷︷ ︸
Op(n1/2)

−X ′Ω−1∆Ω−1u︸ ︷︷ ︸
Op(1)

+X ′Ω−1∆Ω−1∆Ω−1u︸ ︷︷ ︸
Op(n−1/2)

+Op(n
−1).

By using the above results, we have[
R(X ′Ω̂−1X)−1R′

]−1
= S1 + S1/2 +Op(1),

where

S1 =
[
R(X ′Ω−1X)−1R′

]−1
= Op(n),

and

S1/2 = −S1R(X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1R′S1 = Op(n
1/2),

hence

P̂ = P + P−1/2 +Op(n
−1),

where

P = (X ′Ω−1X)−1R′
[
R(X ′Ω−1X)−1R′

]−1
R = Op(1),

P−1/2 =
[
Ik − P

]
(X ′Ω−1X)−1X ′Ω−1∆Ω−1XP = Op(n

−1/2).

Proof. Theorem 1 :

From equation (3.3), we have

β̂ − β = (X̃ ′X̃)−1X̃ ′ũ = ξ−1/2, (A.5)
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where ξ−1/2, is defined below, and the suffix shows the order of magnitude in probability,

ξ−1/2 = (X̃ ′X̃)−1X̃ ′ũ = Op((NT )−1/2).

Using equation (A.5) in equation (3.9), we have

1

D̂
=

[
(β̂ − β̃)′W (β̂ − β̃)

]−1
=

[
β̂′ P̃ ′W P̃ β̂

]−1
=

[(
β + ξ−1/2

)′
P̃ ′WP̃

(
β + ξ−1/2

)]−1
=

[
φ̃+ 2β′P̃ ′WP̃ξ−1/2

]−1
=

1

φ̃

[
1 +

2

φ̃
β′P̃ ′WP̃ξ−1/2

]−1
=

1

φ̃

[
1− 2

φ̃
β′P̃ ′WP̃ξ−1/2

]
+Op((NT )−2)

≡ 1

φ̃︸︷︷︸
Op((NT )−1)

− 1

φ̃2
D1/2︸ ︷︷ ︸

Op((NT )−3/2)

+Op((NT )−2), (A.6)

where D1/2 = 2β′P̃ ′WP̃ξ−1/2 = Op((NT )1/2), φ̃ = β′P̃ ′WP̃β = O(NT ), and the last equality

above holds by using the standard geometric expansion. The terms with order Op((NT )−2) and

smaller are dropped, because they will not enter in the calculation of the bias and MSEM of the

average estimator up to the orders of interest.

Employing equations (A.6) in equation (3.7), we obtain

β̂A − β = (β̂ − β)− τ
[ 1

φ̃
− 1

φ̃2
D1/2 +Op((NT )−2)

]
P̃ β̂

= ζ−1/2 + ζ−1 + ζ−3/2 +Op((NT )−2),

(A.7)

where ζ−1/2, ζ−1 and ζ−3/2 are defined below

ζ−1/2 = ξ−1/2 = Op((NT )−1/2),

ζ−1 = − τ
φ̃
P̃ β = Op((NT )−1),

ζ−3/2 = − τ
φ̃
P̃ ξ−1/2 +

τ

φ̃2
D1/2P̃ β = Op((NT )−3/2).

The bias of the average estimator using the approximations in equation (A.7) up to order

O((NT )−1) is

E(β̂A − β) = E(ζ−1/2 + ζ−1) = E(ξ−1/2)−
τ

φ̃
P̃ β = − τ

φ̃
P̃ β, (A.8)

where the last equality holds because E(u) = 0, hence

E(ξ−1/2) = (X̃ ′X̃)−1X̃ ′ E(ũ) = 0. (A.9)
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The MSEM up to order O((NT )−2) is

E
[
(β̂A − β)(β̂A − β)′

]
= E(Γ−1 + Γ−3/2 + Γ−2), (A.10)

where Γ−1, Γ−3/2 and Γ−2 are

Γ−1 = ζ−1/2ζ
′
−1/2,

Γ−3/2 = ζ−1/2ζ
′
−1 + ζ−1ζ

′
−1/2,

Γ−2 = ζ−1/2ζ
′
−3/2 + ζ−3/2ζ

′
−1/2 + ζ−1ζ

′
−1,

and we give their expectations below

E(Γ−1) = E
(

(X̃ ′X̃)−1X̃ ′ũũ′X̃(X̃ ′X̃)−1
)

= σ2(X̃ ′X̃)−1, (A.11)

E(Γ−3/2) = E(ζ−1/2ζ
′
−1) + E(ζ−1ζ

′
−1/2) = 0, (A.12)

because

E(ζ−1ζ
′
−1/2) = E

[
− τ

φ
P̃βξ′−1/2

]
= − τ

φ̃
P̃ β E(ξ′−1/2) = 0, (A.13)

where the last equality holds by (A.9). Also, we have

E(Γ−2) = E(ζ−1/2ζ
′
−3/2) + E(ζ−3/2ζ

′
−1/2) + E(ζ−1ζ

′
−1)

=
τ2

φ̃2
P̃ ββ′P̃ ′ − τ

φ̃
σ2
[
P̃ (X̃ ′X̃)−1 + (X̃ ′X̃)−1P̃ ′

]
+

2τ

φ̃2
σ2
[
P̃ ββ′P̃ ′WP̃ (X̃ ′X̃)−1 + (X̃ ′X̃)−1P̃ ′WP̃ββ′P̃ ′

]
,

(A.14)

where the last equality above holds by using equations (A.15) and (A.16) below

E(ζ−1ζ
′
−1) =

τ2

φ̃2
P̃ ββ′P̃ ′, (A.15)

and

E(ζ−3/2ζ
′
−1/2) = − τ

φ̃
P̃ E(ξ−1/2ξ

′
−1/2) +

τ

φ̃2
E(D1/2P̃ βξ

′
−1/2)

= − τ
φ̃
σ2P̃ (X̃ ′X̃)−1 +

2τ

φ̃2
σ2P̃ ββ′P̃ ′WP̃ (X̃ ′X̃)−1,

(A.16)

and the last equality above holds by using

E(D1/2P̃ βξ
′
−1/2) = 2P̃ ββ′P̃ ′WP̃ E

(
ξ−1/2ξ

′
−1/2

)
= 2σ2P̃ ββ′P̃ ′WP̃ (X̃X̃)−1. (A.17)
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By employing the results of equations (A.11),(A.12) and (A.14), in equation (A.10), we obtain

the MSEM of the average estimator up to order O((NT )−2), as below

MSEM(β̂A) = MSEM(β̂) +
τ2

φ̃2
P̃ ββ′P̃ ′ − 2τ

φ̃
σ2P̃ (X̃ ′X̃)−1P̃ ′

+
2τ

φ̃2
σ2
[
P̃ ββ′P̃ ′WP̃ (X̃ ′X̃)−1P̃ ′ + P̃ (X̃ ′X̃)−1P̃ ′WP̃ββ′P̃ ′

]
,

(A.18)

where the use has been made of

P̃ (X̃ ′X̃)−1P̃ ′ = P̃ (X̃ ′X̃)−1 = (X̃ ′X̃)−1P̃ ′. (A.19)

Further, the risk of the average estimator up to order O((NT )−1), can be written as

Risk(β̂A) = E
[
(β̂A − β)′W (β̂A − β)

]
= tr

[
W E

[
(β̂A − β)(β̂A − β)′

]]
= tr

[
W MSEM(β̂A)

]
= Risk(β̂) +

τ2

φ̃
− 2τ

φ̃
σ2 tr

[
WP̃ (X̃ ′X̃)−1P̃ ′

]
+

4τ

φ̃2
σ2
[
β′P̃ ′WP̃ (X̃ ′X̃)−1P̃ ′WP̃β

]
.

(A.20)

Proof. Theorem 2 :

Note that, we have

µ̂ = σ̂2 tr
(
P̃ (X̃ ′X̃)−1W

)
= µ̃+ µ−1/2 +Op((NT )−1), (A.21)

where µ−1/2 = tr
(
P̃ (X̃ ′X̃)−1W

)
(σ̂2 − σ2) = µ̃

σ2 (σ̂2 − σ2), and µ̃ = σ2 tr
(
P̃ (X̃ ′X̃)−1W

)
= O(1).

Employing the results of (A.6) and (A.21) in equation (3.8), we obtain

β̂M − β = (β̂ − β)−
[
µ̃+ µ−1/2 +Op((NT )−1)

][ 1

φ̃
− 1

φ̃2
D1/2 +Op((NT )−2)

]
P̃ β̂

= ζ−1/2 + ζ̆−1 + ζ̆−3/2 +Op((NT )−2),

(A.22)

where ζ−1/2, ζ̆−1 and ζ̆−3/2 are defined below

ζ−1/2 = ξ−1/2 = Op((NT )−1/2),

ζ̆−1 = − µ̃
φ̃
P̃ β = Op((NT )−1),

ζ̆−3/2 = − µ̃
φ̃
P̃ ξ−1/2 +

µ̃

φ̃2
D1/2P̃ β −

µ−1/2

φ̃
P̃ β = Op((NT )−3/2),

and ξ−1/2 is defined in (A.5).

The bias of the weighted average MMSE estimator using equation (A.22) up to order O((NT )−1)
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is

E(β̂M − β) = E(ζ−1/2 + ζ̆−1) = E(ξ−1/2)−
µ̃

φ̃
P̃ β = − µ̃

φ̃
P̃ β, (A.23)

where the use has been made of equation (A.9).

The MSEM up to order O((NT )−2) is

E
[
(β̂M − β)(β̂M − β)′

]
= E(Γ−1 + Γ̆−3/2 + Γ̆−2), (A.24)

where Γ−1, Γ̆−3/2 and Γ̆−2 are

Γ−1 = ζ−1/2ζ
′
−1/2,

Γ̆−3/2 = ζ−1/2ζ̆
′
−1 + ζ̆−1ζ

′
−1/2,

Γ̆−2 = ζ−1/2ζ̆
′
−3/2 + ζ̆−3/2ζ

′
−1/2 + ζ̆−1ζ̆

′
−1,

and we give their expectations below

E(Γ−1) = E
(

(X̃ ′X̃)−1X̃ ′ũũ′X̃(X̃ ′X̃)−1
)

= σ2(X̃ ′X̃)−1, (A.25)

E(Γ̆−3/2) = E(ζ−1/2ζ̆
′
−1) + E(ζ̆−1ζ

′
−1/2) = 0, (A.26)

because

E(ζ̆−1ζ
′
−1/2) = E

[
− µ̃

φ̃
P̃ βξ′−1/2

]
= − µ̃

φ̃
P̃ β E(ξ−1/2) = 0, (A.27)

where the last equality holds by (A.9). Also, we have

E(Γ̆−2) = E(ζ−1/2ζ̆
′
−3/2) + E(ζ̆−3/2ζ

′
−1/2) + E(ζ̆−1ζ̆

′
−1)

=
µ̃2

φ̃2
P̃ ββ′P̃ ′ − µ̃

φ̃
σ2
[
P̃ (X̃ ′X̃)−1 + (X̃ ′X̃)−1P̃ ′

]
+

2µ̃

φ̃2
σ2
[
P̃ ββ′P̃ ′WP̃ (X̃ ′X̃)−1 + (X̃ ′X̃)−1P̃ ′WP̃ββ′P̃ ′

]
,

(A.28)

where the last equality above holds by using equations (A.29) and (A.30) below

E(ζ̆−1ζ̆
′
−1) =

µ̃2

φ̃2
P̃ ββ′P̃ ′, (A.29)
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and

E(ζ̆−3/2ζ
′
−1/2) = − µ̃

φ̃
P̃ E(ξ−1/2ξ

′
−1/2) +

µ̃

φ̃2
E(D1/2P̃ βξ

′
−1/2)− E(

µ−1/2

φ̃
P̃ βξ′−1/2)

= − µ̃
φ̃
σ2P̃ (X̃ ′X̃)−1 +

2µ̃

φ̃2
σ2P̃ ββ′P̃ ′WP̃ (X̃ ′X̃)−1,

(A.30)

where the last equality holds by using (A.17), and

E(µ−1/2ξ−1/2) =
µ̃

σ2
(X̃ ′X̃)−1X̃ ′ E

(
ũ (σ̂2 − σ2)

)
= 0, (A.31)

because of the normality of the errors.

By employing the results of equations (A.25),(A.26) and (A.28), in equation (A.24), we obtain

the MSEM of the estimator up to order O((NT )−2), as below

MSEM(β̂M ) = MSEM(β̂) +
µ̃2

φ̃2
P̃ ββ′P̃ ′ − 2µ̃

φ̃
σ2P̃ (X̃ ′X̃)−1P̃ ′ +

2µ̃

φ̃2
σ2
[
P̃ ββ′P̃ ′WP̃ (X̃ ′X̃)−1P̃ ′

+ P̃ (X̃ ′X̃)−1P̃ ′WP̃ββ′P̃ ′
]
,

(A.32)

where the use has been made of equation (A.19). Further, the risk of the estimator up to order

O((NT )−1), can be written as

Risk(β̂M ) = E
[
(β̂M − β)′Wβ̂M − β)

]
= tr

[
W E

[
(β̂M − β)(β̂M − β)′

]]
= tr

[
W MSEM(β̂M )

]
= Risk(β̂) +

µ̃2

φ̃
− 2µ̃

φ̃
σ2 tr

[
WP̃ (X̃ ′X̃)−1P̃ ′

]
+

4µ̃

φ̃2
σ2β′P̃ ′WP̃ (X̃ ′X̃)−1P̃ ′WP̃β.

(A.33)

Proof. Theorem 3 :

Note that

λ̂ = λ+
λf√
N

+Op(N
−1), (A.34)

where

f =
1√
Nσ2

u′
( MD

T − 1
− λZD

)
u− (1− λ)

( α′α√
Nσ2α

)
− 2√

Nσ2η
u′Dα, (A.35)
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for a proof see Ullah and Huang (2006). Hence, we have

∆ = Ω̂− Ω = ZD(λ̂−1 − λ−1) = − 1√
Nλ

ZDf + op(N
−1/2), (A.36)

where the last equality holds by expansion of the inverse of λ̂−1.

Using the results of Lemma A.1, in equation (3.13), we have

β̂ − β = (X ′Ω̂−1X)−1X ′Ω̂−1ε = ξ−1/2 + ξ−1 + ξ−3/2 +Op(N
−2), (A.37)

where ξ−1/2, ξ−1/2, and ξ−3/2 are defined below, and the suffixes show the order of magnitude in

probability,

ξ−1/2 = (X ′Ω−1X)−1X ′Ω−1ε = Op(N
−1/2),

ξ−1 = −(X ′Ω−1X)−1X ′Ω−1∆Qε = Op(N
−1),

ξ−3/2 = (X ′Ω−1X)−1X ′Ω−1∆Q∆Qε = Op(N
−3/2)

and Q = Ω−1 − Ω−1X(X ′Ω−1X)−1X ′Ω−1.

Using equation (A.37) in equation (3.17), we have

1

D̂
=

[
(β̂ − β̃)′W (β̂ − β̃)

]−1
=

[
β̂′ P̂ ′W P̂ β̂

]−1
=

[(
β + ξ−1/2 +Op(N

−1)
)′[

P + P−1/2 +Op(N
−1)
]′
W
[
P + P−1/2 +Op(N

−1)
](
β + ξ−1/2 +Op(N

−1)
)]−1

=

[
φ+ 2β′P ′WPξ−1/2 + 2β′P ′WP−1/2 β +Op(1)

]−1
=

1

φ

[
1 +

2

φ
β′P ′WPξ−1/2 +

2

φ
β′P ′WP−1/2 β +Op(N

−1)

]−1
=

1

φ

[
1− 2

φ
β′P ′WPξ−1/2 −

2

φ
β′P ′WP−1/2 β

]
+Op(N

−2)

≡ 1

φ︸︷︷︸
Op(N−1)

− 1

φ2
D1/2︸ ︷︷ ︸

Op(N−3/2)

+Op(N
−2), (A.38)

where D1/2 = 2
[
β′P ′WPξ−1/2 +β′P ′WP−1/2 β

]
= Op(N

1/2), φ = β′P ′WPβ = O(N), and the last

equality above holds by using the standard geometric expansion. Also, the use has been made of

equations (A.1)–(A.4). The terms with order Op(N
−2) and smaller are dropped, because they will

not enter in the calculation of the bias and MSEM of the average estimator up to the orders of

interest.
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Employing equations (A.4)–(A.38) in equation (3.15), we obtain

β̂A − β = (β̂ − β)− τ
[ 1

φ
− 1

φ2
D1/2 +Op(N

−2)
][
P + P−1/2 +Op(N

−1)
]
β̂

= ζ−1/2 + ζ−1 + ζ−3/2 +Op(N
−2),

(A.39)

where ζ−1/2, ζ−1 and ζ−3/2 are defined below

ζ−1/2 = ξ−1/2 = Op(N
−1/2),

ζ−1 = ξ−1 −
τ

φ
Pβ = Op(N

−1),

ζ−3/2 = ξ−3/2 −
τ

φ
Pξ−1/2 −

τ

φ
P−1/2β +

τ

φ2
D1/2Pβ = Op(N

−3/2).

The bias of the average estimator using the approximations in equation (A.39) up to order

O(N−1) is

E(β̂A − β) = E(ζ−1/2 + ζ−1) = E(ξ−1/2) + E(ξ−1)−
τ

φ
Pβ = − τ

φ
Pβ, (A.40)

where the last equality holds because E(ε) = 0, then

E(ξ−1/2) = (X ′Ω−1X)−1X ′Ω−1 E(ε) = 0, (A.41)

and by the normality of the errors

E(ξ−1) = (X ′Ω−1X)−1X ′Ω−1 E(∆Qε) = 0. (A.42)

The MSEM up to order O(N−2) is

E
[
(β̂A − β)(β̂A − β)′

]
= E(Γ−1 + Γ−3/2 + Γ−2), (A.43)

where Γ−1, Γ−3/2 and Γ−2 are

Γ−1 = ζ−1/2ζ
′
−1/2,

Γ−3/2 = ζ−1/2ζ
′
−1 + ζ−1ζ

′
−1/2,

Γ−2 = ζ−1/2ζ
′
−3/2 + ζ−3/2ζ

′
−1/2 + ζ−1ζ

′
−1,

and we give their expectations below

E(Γ−1) = E
(

(X ′Ω−1X)−1X ′Ω−1εε′Ω−1X(X ′Ω−1X)−1
)

= σ2(X ′Ω−1X)−1, (A.44)

E(Γ−3/2) = E(ζ−1/2ζ
′
−1) + E(ζ−1ζ

′
−1/2) = E(ξ−1ξ

′
−1/2) + E(ξ−1/2ξ

′
−1), (A.45)
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because

E(ζ−1ζ
′
−1/2) = E

[(
ξ−1 −

τ

φ
Pβ
)
ξ′−1/2

]
= E(ξ−1ξ

′
−1/2)−

τ

φ
Pβ E(ξ−1/2) = E(ξ−1ξ

′
−1/2), (A.46)

where the last equality holds by (A.41). Also, we have

E(Γ−2) = E(ζ−1/2ζ
′
−3/2) + E(ζ−3/2ζ

′
−1/2) + E(ζ−1ζ

′
−1)

= E(ξ−3/2ξ
′
−1/2) + E(ξ−1/2ξ

′
−3/2) + E(ξ−1ξ

′
−1) +

τ2

φ2
Pββ′P ′

− τ

φ
σ2
[
P (X ′Ω−1X)−1 + (X ′Ω−1X)−1P ′

]
+

2τ

φ2
σ2
[
Pββ′P ′WP (X ′Ω−1X)−1 + (X ′Ω−1X)−1P ′WPββ′P ′

]
,

(A.47)

where the last equality above holds by using equations (A.48) and (A.49) below

E(ζ−1ζ
′
−1) = E(ξ−1ξ

′
−1)−

τ

φ
E(ξ−1β

′P ′)− τ

φ
E(Pβξ′−1) +

τ2

φ2
Pββ′P ′

= E(ξ−1ξ
′
−1) +

τ2

φ2
Pββ′P ′,

(A.48)

and

E(ζ−3/2ζ
′
−1/2) = E(ξ−3/2ξ

′
−1/2)−

τ

φ
P E(ξ−1/2ξ

′
−1/2)−

τ

φ
E(P−1/2βξ

′
−1/2) +

τ

φ2
E(D1/2Pβξ

′
−1/2)

= E(ξ−3/2ξ
′
−1/2)−

τ

φ
σ2P (X ′Ω−1X)−1 +

2τ

φ2
σ2Pββ′P ′WP (X ′Ω−1X)−1,

(A.49)

and the last equality holds by using

E(D1/2Pβξ
′
−1/2) = 2Pββ′P ′W E

[(
Pξ−1/2 + P−1/2 β

)
ξ−1/2

]
= 2σ2Pββ′P ′WP (X ′Ω−1X)−1 + 2Pββ′P ′W E(P−1/2βξ

′
−1/2),

(A.50)

and

E(P−1/2βξ
′
−1/2) = E

[
(Ik − P )(X ′Ω−1X)−1X ′Ω−1∆Ω−1XPβε′Ω−1X(X ′Ω−1X)−1

]
= − 1√

Nλ
E
[
(Ik − P )(X ′Ω−1X)−1X ′Ω−1ZDfΩ−1XPβε′Ω−1X(X ′Ω−1X)−1

]
= − 1√

Nλ
(Ik − P )(X ′Ω−1X)−1X ′Ω−1ZDΩ−1XPβ E

[
fε′
]
Ω−1X(X ′Ω−1X)−1

= 0,

which holds by the normality of the errors.
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By employing the results of equations (A.44),(A.45) and (A.47), in equation (A.43), we obtain

the MSEM of the average estimator up to order O(N−2), as below

MSEM(β̂A) = MSEM(β̂) +
τ2

φ2
Pββ′P ′ − τ

φ
2σ2P (X ′Ω−1X)−1P ′

+
2τ

φ2
σ2
[
Pββ′P ′WP (X ′Ω−1X)−1P ′ + P (X ′Ω−1X)−1P ′WPββ′P ′

]
,

(A.51)

where the use has been made of

P (X ′Ω−1X)−1P ′ = P (X ′Ω−1X)−1 = (X ′Ω−1X)−1P ′. (A.52)

Further, the risk of the average estimator up to order O(N−1), can be written as

Risk(β̂A) = E
[
(β̂A − β)′W (β̂A − β)

]
= tr

[
W E

[
(β̂A − β)(β̂A − β)′

]]
= tr

[
W MSEM(β̂A)

]
= Risk(β̂) +

τ2

φ
− 2τσ2

φ
tr
[
WP (X ′Ω−1X)−1P ′

]
+

4τσ2

φ2

[
β′P ′WP (X ′Ω−1X)−1P ′WPβ

]
.

(A.53)

Proof. Theorem 4 :

Using the results of Lemma A.1, we have

µ̂ = σ̂2 tr
(
P̂ (X ′Ω̂−1X)−1W

)
= µ+ µ−1/2 +Op(N

−1), (A.54)

where µ−1/2 = σ2 tr
(
P (X ′Ω−1X)−1X ′Ω−1∆Ω−1X(X ′Ω−1X)−1W + P−1/2(X

′Ω−1X)−1W
)

+

σ2νε = Op(N
−1/2), µ = σ2 tr

(
P (X ′Ω−1X)−1P ′W

)
= tr

(
P (X ′Ω̄

−1
X)−1P ′W

)
= O(1), and

νε =
(
ε′MDε/σ

2N(T − 1)
)
− 1.

Employing the results of (A.4), (A.38) and (A.54) in equation (3.16), we obtain

β̂M − β = (β̂ − β)−
[
µ+ µ−1/2 +Op(N

−1)
][ 1

φ
− 1

φ2
D1/2 +Op(N

−2)
][
P + P−1/2 +Op(N

−1)
]
β̂

= ζ−1/2 + ζ̆−1 + ζ̆−3/2 +Op(N
−2),

(A.55)

where ζ−1/2, ζ̆−1 and ζ̆−3/2 are defined below

ζ−1/2 = ξ−1/2 = Op(N
−1/2),

ζ̆−1 = ξ−1 −
µ

φ
Pβ = Op(N

−1),

ζ̆−3/2 = ξ−3/2 −
µ

φ
Pξ−1/2 −

µ

φ
P−1/2β +

µ

φ2
D1/2Pβ −

µ−1/2

φ
Pβ = Op(N

−3/2),
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and ξ−1/2 is given in equation (A.37).

The bias of the weighted average MMSE estimator using equation (A.55) up to order O(N−1)

is

E(β̂M − β) = E(ζ−1/2 + ζ̆−1) = E(ξ−1/2) + E(ξ−1)−
µ

φ
Pβ = −µ

φ
Pβ, (A.56)

where the use has been made of equation (A.41) and (A.42).

The MSEM up to order O(N−2) is

E
[
(β̂M − β)(β̂M − β)′

]
= E(Γ−1 + Γ̆−3/2 + Γ̆−2), (A.57)

where Γ−1, Γ̆−3/2 and Γ̆−2 are

Γ−1 = ζ−1/2ζ
′
−1/2,

Γ̆−3/2 = ζ−1/2ζ̆
′
−1 + ζ̆−1ζ

′
−1/2,

Γ̆−2 = ζ−1/2ζ̆
′
−3/2 + ζ̆−3/2ζ

′
−1/2 + ζ̆−1ζ̆

′
−1,

and we give their expectations below

E(Γ−1) = E
(

(X ′Ω−1X)−1X ′Ω−1εε′Ω−1X(X ′Ω−1X)−1
)

= σ2(X ′Ω−1X)−1, (A.58)

E(Γ̆−3/2) = E(ζ−1/2ζ̆
′
−1) + E(ζ̆−1ζ

′
−1/2) = E(ξ−1ξ

′
−1/2) + E(ξ−1/2ξ

′
−1), (A.59)

because

E(ζ̆−1ζ
′
−1/2) = E

[(
ξ−1 −

µ

φ
Pβ
)
ξ′−1/2

]
= E(ξ−1ξ

′
−1/2)−

µ

φ
Pβ E(ξ−1/2) = E(ξ−1ξ

′
−1/2), (A.60)

where the last equality holds by (A.41). Also, we have

E(Γ̆−2) = E(ζ−1/2ζ̆
′
−3/2) + E(ζ̆−3/2ζ

′
−1/2) + E(ζ̆−1ζ̆

′
−1)

= E(ξ−3/2ξ
′
−1/2) + E(ξ−1/2ξ

′
−3/2) + E(ξ−1ξ

′
−1) +

µ2

φ2
Pββ′P ′

− µ

φ
σ2
[
P (X ′Ω−1X)−1 + (X ′Ω−1X)−1P ′

]
+

2µ

φ2
σ2
[
Pββ′P ′WP (X ′Ω−1X)−1 + (X ′Ω−1X)−1P ′WPββ′P ′

]
,

(A.61)

where the last equality above holds by using equations (A.62) and (A.63) below

E(ζ̆−1ζ̆
′
−1) = E(ξ−1ξ

′
−1)−

µ

φ
E(ξ−1)β

′P ′ − µ

φ
Pβ E(ξ′−1) +

µ2

φ2
Pββ′P ′

= E(ξ−1ξ
′
−1) +

µ2

φ2
Pββ′P ′,

(A.62)
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and

E(ζ̆−3/2ζ
′
−1/2) = E(ξ−3/2ξ

′
−1/2)−

µ

φ
P E(ξ−1/2ξ

′
−1/2)−

µ

φ
E(P−1/2βξ

′
−1/2) +

µ

φ2
E(D1/2Pβξ

′
−1/2)

− E(
µ−1/2

φ
Pβξ′−1/2) = E(ξ−3/2ξ

′
−1/2)−

µ

φ
σ2P (X ′Ω−1X)−1

+
2µ

φ2
σ2Pββ′P ′WP (X ′Ω−1X)−1,

(A.63)

where the last equality holds by using (A.50), and

E(µ−1/2ξ−1/2) = − σ2√
Nλ

µ̆(X ′Ω−1X)−1X ′Ω−1 E(εf) + σ2(X ′Ω−1X)−1X ′Ω−1 E(ενε) = 0,

and

µ̆ = tr
(
P (X ′Ω−1X)−1X ′Ω−1ZDΩ−1X(X ′Ω−1X)−1W

+ (Ik − P )(X ′Ω−1X)−1X ′Ω−1ZDΩ−1XP (X ′Ω−1X)−1W
)
.

By employing the results of equations (A.58),(A.59) and (A.61), in equation (A.57), we obtain

the MSEM of the estimator up to order O(N−2), as below

MSEM(β̂M ) = MSEM(β̂) +
µ2

φ2
Pββ′P ′ − 2

µ

φ
σ2P (X ′Ω−1X)−1P ′

+
2µ

φ2
σ2
[
Pββ′P ′WP (X ′Ω−1X)−1P ′ + P (X ′Ω−1X)−1P ′WPββ′P ′

]
,

(A.64)

where the use has been made of equation (A.52). Further, the risk of the estimator up to order

O(N−1), can be written as

Risk(β̂M ) = E
[
(β̂M − β)′Wβ̂M − β)

]
= tr

[
W E

[
(β̂M − β)(β̂M − β)′

]]
= tr

[
W MSEM(β̂M )

]
= Risk(β̂) +

µ2

φ
− 2µ

φ
σ2 tr

[
WP (X ′Ω−1X)−1P ′

]
+

4µ

φ2
σ2β′P ′WP (X ′Ω−1X)−1P ′WPβ.

(A.65)
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