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Abstract

This paper provides a framework for joint estimation and identification of latent group

structures in panel data models using a pairwise fusion penalized approach. The latent structure

of the model allows individuals to be classified into different groups where the number of

groups and the group membership are unknown. The individuals within a group have common

slope parameters, while parameter heterogeneity is allowed across the groups. A penalized

least squares (PLS) approach is introduced for models with exogenous regressors. When the

model contains endogenous regressors, a penalized generalized method of moment (PGMM) is

introduced. To implement the proposed approach, an alternating direction method of multipliers

algorithm has been developed. The proposed method is further illustrated by simulation studies

which demonstrate the finite sample performance of the method, and is applied in an empirical

analysis.
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1 Introduction

Panel data offer great opportunities in empirical research. Nevertheless, in practice, they typically

involve aggregate data from various units (such as workers, firms, countries) that are different

in some unobservable aspects to researchers. Accordingly, the researchers face a trade-off between

using flexible methods to model the unobservable heterogeneity, and using pooled models that avoid

the heterogeneity by assuming to some extent homogeneous coefficients for all individual units. To

overcome this challenge, recently, latent group structures in panel data literature have received

considerable attention. The most important advantage of the latent group structure is that unlike

completely heterogenous or fully homogenous models, it allows panel units to be classified into

groups, where the individuals within a group share the same slope parameters, while heterogeneity

exists across the groups. Inspired by the literature, this paper introduces a simple and fast method

to jointly identify and estimate latent group structures in panel data models when the number of

groups and the individuals’ group identities are both unknown.

A common approach to model heterogeneity in econometric analysis is to assume complete

slope heterogeneity. This assumption avoids misspecification, but does not gain from working

with panel data, and could result in imprecise estimates even if the time dimension is long

(see, Baltagi and Griffin (1997)). Nonetheless, conventional panel data models often avoid the

heterogeneity and assume the regression parameters are the same across individuals, and the

unobserved heterogeneity is modeled through individual-specific effects (fixed effect and random

effect models). This assumption exploits cross-section averaging and causes higher efficiency, but at

the cost of estimation bias and inconsistency, which is supported by an increasing number of studies

due to a better forecast performance of the associated estimators (see for example, Baltagi et al.

(1989), Maddala (1991), Maddala and Hu (1996), Baltagi and Griffin (1997), and Hoogstrate et al.

(2000)). In spite of a better forecast performance, it is often difficult to justify the slope homogeneity

assumption in the empirical work, as pointed out by Hsiao and Tahmiscioglu (1997), Phillips and

Sul (2007), Browning and Carro (2007), and Su and Chen (2013). This discussion motivated much

of the recent research on the latent group structures in panel data analysis including Sun (2005),

Lin and Ng (2012), Deb and Trivedi (2013), Bonhomme and Manresa (2015), Sarafidis and Weber

(2015), Ando and Bai (2016), Bester and Hansen (2016), Su et al. (2016), Lu and Su (2017), Su

and Ju (2018), Wang et al. (2018), Su et al. (2019), Gu and Volgushev (2019), Liu et al. (2020),

and Wang and Su (2021), among others. Moreover, the group structure has sound foundations
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in game theory or macroeconomic models where multiplicity of Nash equilibria is expected (Hahn

and Moon (2010)). The latent group structure models partition individuals in different groups and

allow the within group individuals share common coefficients, while the groups are assumed to have

slope heterogeneity. Since the group membership and the number of groups are unknown in these

models, the determination of the true number of groups and each individual’s group identity are

the key questions. Several approaches have been proposed to address these questions. Sun (2005),

Kasahara and Shimotsu (2009), and Browning and Carro (2007) consider finite mixture models. Su

et al. (2016) develop a new variant of the Lasso (least absolute shrinkage and selection operator)

procedure, called classifier-Lasso (C-Lasso), to achieve classification in panel structure models where

the penalty takes an additive-multiplicative form. The C-Lasso method of Su et al. (2016) has been

extended to allow for two-way component errors, interactive fixed effects, non-stationary regressors,

and semi-parametric specification, respectively, in Lu and Su (2017), Su and Ju (2018), Huang et al.

(2020), and Su et al. (2019). Lin and Ng (2012) and Sarafidis and Weber (2015) extend the K-means

algorithm to the panel regression framework with latent group structures, but the asymptotic

properties of the estimators and the procedures are not provided. Bonhomme and Manresa (2015)

and Ando and Bai (2016) modify the K-means algorithm to estimate the time-varying grouped

patterns of heterogeneity and unobserved group interactive fixed effects, respectively. Wang et

al. (2018) extend the CARDS (clustering algorithm in regression via data-driven segmentation)

method of Ke et al. (2015) to panel structure models where the latent group structures exist in

vectors of slope parameters. Recently, Liu et al. (2020) extend the modified K-means algorithm of

Bonhomme and Manresa (2015) to estimate and identify the latent group structures in panel data.

Wang and Su (2021) extend the sequential binary segmentation algorithm (SBSA) of Bai (1997)

for break detection from the time series setup to the panel data framework to identify the latent

group structures.

These methods make important contributions by empirically estimating the group identities.

However, to implement them, one often needs to determine the number of groups first.

Consequently, the estimation error often accumulates across the two steps and leads to suboptimal

performance. The objective of this paper is to provide a new framework to jointly estimate and

identify the latent group structures without a priori knowledge of classification or a natural basis

for separating slope coefficients into groups.
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Inspired by the adaptive group fused Lasso of Qian and Su (2016), and the pairwise fusion

concave penalty of Ma and Huang (2017), we propose a penalized procedure with a pairwise fusion

penalty to automatically estimate slope parameters and identify group identities where both the

number of groups and the individual group identities are unknown. Our method and mainly

our model is different from theirs in several important aspects. Qian and Su (2016) consider

estimation and inference of common structural breaks in panel data models using an adaptive

group fused Lasso. Their method cannot be used to classify individuals into different groups

because there is no natural ordering across individuals, also a different algorithm to locate common

individuals is required. Ma and Huang (2017) consider the problem of identifying subgroups among

observations, using a concave pairwise fusion penalty. Clearly, their model is different from the

model considered here to estimate and identify the latent group structures. Besides, the penalty

term in Ma and Huang (2017) is imposed through concave penalties such as the SCAD (smoothly

clipped absolute deviations penalty) of Fan and Li (2001) and the MCP (minimax concave penalty)

of Zhang (2010), but our penalty is imposed through an adaptive group fused Lasso. The other

main differences of our method from theirs lies in three aspects: 1) we impose the penalty on

slope vector differences, whereas their method applies the penalty on the intercepts, 2) we consider

both penalized least squares and penalized generalized method of moments estimations and show

their asymptotic properties, while Ma and Huang (2017) only consider penalized least squares,

3) we assign different weights {ẇij}, based on preliminary estimates of the slope parameters to

penalize different coefficient differences, however these weights are not feasible in their study. Ma

and Huang (2017) use concave penalties because these penalties provide the unbiasedness property.

They argue that the Lasso penalty generates large biases. This is due the fact that the Lasso

penalty is not adaptive for discriminating large from small differences. As a result, over-penalizing

large differences due to shrinking small differences towards zero prevents its consistency property.

However, our panel regression allows us to use the adaptive group Lasso penalty that assigns

different weights to penalize the pairwise differences and avoids this shortcoming of the Lasso.

Since our proposed framework utilizes a pairwise adaptive group fused Lasso penalty, we denote

our estimation procedure as PAGFL. To implement our method, we derive an ADMM (alternating

direction method of multipliers) algorithm (Boyd et al. (2011)), and show the convergence properties

of our ADMM algorithm. It is worth mentioning that, the ADMM has good convergence properties

for convex loss functions with the Lp, p ≥ 1, penalties (see Boyd et al. (2011) and Chi and Lang
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(2015)). Thus, not only our adaptive Lasso penalty has similar properties to the concave penalties,

it enjoys the convexity and hence computational expedience.

We develop two classes of estimators for panel structure models to estimate the slope parameters:

penalized least squares (PLS) and penalized generalized method of moments (PGMM). The PLS

can be applied to static or dynamic panel models without endogenous regressors, while the PGMM

is suitable for panel models with endogeneity or dynamic structures. We show that the PLS

method is an oracle procedure (using the language of Fan and Li (2001)), in the sense that the

PLS estimator classifies the right individuals in the right groups (classification consistency), and

asymptotically is equivalent to the oracle estimator. The oracle estimator is obtained from least

squares regression by assuming that the true group structure is known. Similarly, our PGMM

estimator satisfies the classification consistency, but its oracle property does not hold generally.

Our asymptotic results hold under (N,T ) → ∞ jointly, where T is the time series dimension, and

N is the cross-section dimension. The major contribution of our method compared to the existing

methods in the literature is that it asymptotically identifies the true structure while estimating the

model parameters consistently without relying on correct initial estimates of the number of groups.

This implies that our estimation and classification consistency results hold without requiring a

priori correct estimation or knowledge of the number of groups. This is of crucial importance as in

most empirical research the number of groups is often unknown to practitioners. Furthermore, our

proposed approach allows the number of groups and the number of individuals within each group

to be either divergent or fixed, which makes our method applicable to a large body of applications.

In comparison with the C-Lasso of Su et al. (2016), the K-means algorithm, the CARDS

algorithm of Wang et al. (2018), and the SBSA of Wang and Su (2021), our method has both

pros and cons. First, the C-Lasso procedure of Su et al. (2016) is not a convex problem1, and the

K-means algorithm has been shown to be NP-hard, and can get trapped in suboptimal local minima.

Unlike the K-means algorithm and the C-Lasso method, our PAGFL approach admits a simple and

fast iterative algorithm that is guaranteed to converge to the unique global minimizer. Therefore,

the computation burden of our approach is not as much as the K-means algorithm and the C-Lasso.

Our penalty term contains
(
N
2

)
pairwise differences of p slope coefficients, which includes several

redundant constraints, and can impose computational challenges when N×p is very large.2 Second,

1However, the numerical solution can be transformed into a sequence of convex problems.
2We experimented different simulation studies, and faced the computation challenge in implementing ADMM when
N × p was more than 60,000.
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the C-Lasso needs to specify two tuning parameters, one for determining the number of groups,

and the other one for the penalty term. The CARDS method needs the choice of three tuning

parameters, one is used to control the number of segments, the other two are used for the between-,

and within-segment penalties. Unlike the C-Lasso, and CARDS methods, but like the K-means

algorithm and the SBSA method, our PAGFL approach relies on the choice of one tuning parameter.

We propose and validate a BIC-type information criteria to determine the tuning parameter. The

K-means algorithm and the SBSA method require the tuning parameter to determine the number

of groups, while we need the tuning parameter in our penalty term. Third, the SBSA of Wang and

Su (2021) and the CARDS method of Wang et al. (2018) rely on ordered segmentations to identify

the latent group structure and construct the Lasso-type penalties, respectively, which are sensitive

to the choice of initial estimators, and often it may be difficult to construct one. The K-means

algorithm is also sensitive to the choice of initial estimators, as discussed in Bonhomme and Manresa

(2015). Unlike, the SBSA and CARDS methods, but like the C-Lasso and the K-means algorithm

our PAGFL method does not rely on order segmentation. However, our method requires initial

consistent estimators to produce the adaptive weights in the penalty term. Fourth, the C-Lasso

may leave some individuals unclassified. Su et al. (2016) recommend to classify these unclassified

individuals to one of the existing groups with closest distance. However, our method is not subject

to this issue because it does not require the knowledge of the number of groups.

The reminder of this paper is organized as follows. Section 2 describes our fixed effect

panel model, the PLS and PGMM estimation methods depending on whether the regressors are

endogenous. Sections 3 and 4 analyze the asymptotic properties of the PLS and PGMM estimators,

respectively. Section 5 presents the computation and algorithm. Monte Carlo results are given in

section 6. In Section 7, we apply our estimators to a simple model of inter-temporal dynamics of

the unemployment rate in the U.S. states. Conclusions and final remarks are given is section 8. All

proofs and detailed calculations are provided in the Online Supplemental Appendix.

A brief word on notation: For an m × n real matrix A, we write the transpose A′, the

Frobenius norm as ∥A∥ = (tr(AA′))1/2, and its spectral norm as ∥A∥sp. When A is symmetric, we

use µmax(A) and µmin(A) to denote the largest and smallest eigenvalues, respectively. Ip and 0p×1

denote p× p identity matrix and p× 1 vector of zeros. 1(·) denotes the indicator function, “p.d.”

and “p.s.d.” abbreviate “positive definite” and “positive semi-definite”, respectively. The operators
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p−→,
D−→, and plim denote respectively, convergence in probability, convergence in distribution, and

probability limit. We use (N,T ) → ∞ to signify that N and T pass jointly to infinity.

2 Model and Penalized Estimation

In this section, we consider a linear panel structure model with an unknown number of groups, and

group membership.

2.1 The Model

Consider the following linear panel data model

yit = β0′
i xit + ηi + uit, i = 1, . . . , N, t = 1, . . . , T, (2.1)

where yit is the dependent variable, xit is a p × 1 vector of regressors explaining yit, ηi is the

individual fixed effect that may be correlated with the regressors, uit is the idiosyncratic error term

with zero mean, T is the number of observations, and N is the number of individual units. We

assume that β0
i is a p × 1 vector of slope parameters that admits a possible grouping structure of

the form

β0
i =


α0
1, if i ∈ G0

1

...
...

α0
K0

, if i ∈ G0
K0

,

(2.2)

where α0
l ̸= α0

k for any l, k = 1, . . . ,K0, with l ̸= k, G0
l ∩ G0

k = ∅, and G0
K0

= {G0
1, G

0
2, . . . , G

0
K0

}

forms a partition of {1, 2, . . . , N}. Let Nk be the number of individual units in G0
k, and the pK0×1

matrix of αK0 , and the pN × 1 matrix β be defined as

αK0 = (α′
1, α

′
2, . . . , α

′
K0

)′ and β = (β′
1, β

′
2, . . . , β

′
N )′, (2.3)

and let α0
K0

and β0 denote the true values of αK0 and β. In practice, the number of groups, K0,

is unknown. However, it is usually reasonable to assume that K0 is smaller than N . Our goal is
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to estimate the regression coefficients α0
K0

, the number of groups K0, and identify the latent group

structure.

We consider two cases about the exogeneity or endogeneity of the regressors:

(a) E (xisuit) = 0, for all 1 ≤ s ≤ t ≤ T ;

(b) E (xituit) ̸= 0, for t = 1, . . . , T.

The first case occurs when the regressors are weakly exogenous which allows for lagged values of

yit to be included in xit, so that least squares criteria are appropriate. The second case happens

when the regressors contain either lagged dependent variables or endogenous regressors that are

correlated with the error term. In this case, we assume there exists a q × 1 vector of instruments

zit with q ≥ p.

Since the individual effects, ηi, are not of main interest, in case (a), we concentrate them out

and obtain the following equation

ỹit = β0′
i x̃it + ũit, i = 1, . . . , N, t = 1, . . . , T, (2.4)

where, e.g., x̃it = xit − T−1
∑T

t=1 xit. In case (b), to eliminate the effect of µi in the estimation

procedure, we consider the first-differenced equation

∆yit = β0′
i ∆xit +∆uit, (2.5)

where, e.g., ∆yit = yit − yi,t−1 for i = 1, . . . , N , and t = 1, ..., T, by assuming that we have

observations on yi0 and xi0.

2.2 Penalized Least Squares (PLS) Estimation

To estimate the model in (2.4) under case (a), we propose minimizing the following objective

function

Q1,NT (β, λ1) =
1

T

N∑
i=1

T∑
t=1

(ỹit − β′
ix̃it)

2 +
λ1

N

∑∑
1≤i<j≤N

ẇij∥βi − βj∥, (2.6)
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where λ1 ≥ 0 is a tuning parameter, and ẇij is a data-driven weight defined by

ẇij = ∥β̇i − β̇j∥−κ, for i, j = 1, . . . , N, (2.7)

where β̇i and β̇j are preliminary consistent estimates of βi and βj , respectively, and κ is a

user-specified positive constant that usually takes value 2 in the literature of adaptive Lasso.

To obtain the adaptive weights {ẇij : i, j ∈ {1, . . . , N}}, we propose to obtain the preliminary

estimates β̇ = (β̇′
1, . . . , β̇

′
N )′, by minimizing the first term in equation (2.6) which results in the

ordinary least squares. Thus for the i-th element of β̇, we have

β̇i =
( T∑

t=1

x̃itx̃
′
it

)−1
T∑
t=1

x̃itỹit. (2.8)

The objective function in (2.6) is related to the literature on adaptive Lasso (Zou (2006)), group

Lasso (Yuan and Lin (2006)), fused Lasso (Tibshirani et al. (2005)) and group fused Lasso (Qian

and Su (2015)), however, they are not applicable here. Qian and Su (2015) determine the unknown

number of structural breaks in time series regression framework which is different from the purpose

of this paper. The other listed papers above aim at determining the nonzero coefficients from

the zero ones, and are not applicable here because our aim is to determine the unknown group

structure.

It is worth emphasizing that the minimization of (2.6) is a convex optimization problem, thus it

does not suffer from multiple local minima issue, and its global minimizer β̂ = argminQ1,NT (β, λ1),

can be efficiently solved. We suppress the dependence of β̂ ≡ β̂(λ1) on λ1 unless necessary, and

choose the tuning parameter using a data-driven method proposed in Section 3.4.

The penalty in (2.6) shrinks some of the pairs βi − βj to zero, thus we can partition the slope

parameters into groups. In practice, let {α̂1, . . . , α̂K̂
} be the distinct values of β̂. Then, we define

Ĝ
K̂

= {Ĝ1, . . . , ĜK̂
} which forms a partition of {1, 2, . . . , N}, with Ĝk = {i : β̂i = α̂k, 1 ≤ i ≤ N},

for any 1 ≤ k ≤ K̂. We denote α̂
K̂

= (α̂′
1, . . . , α̂

′
K̂
)′, β̂ = (β̂′

1, . . . , β̂
′
N )′, Ĝ

K̂
, and K̂, respectively, as

the PLS estimates of α, β, G0
K0

, and K0, using the PAGFL procedure.
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Post-Lasso Least Squares Estimation

Given the fact that we estimate the group structure, we obtain the post-Lasso least squares

estimator of αk for k = 1, . . . , K̂ as

α̂p

Ĝk
=

( ∑
i∈Ĝk

T∑
t=1

x̃itx̃
′
it

)−1 ∑
i∈Ĝk

T∑
t=1

x̃itỹit, (2.9)

where K̂, and Ĝk are the estimated number of groups, and the groups identities via the PAGFL

procedure. We denote the post-Lasso least squares estimator of α by α̂p

K̂
= (α̂p

Ĝ1

′, . . . , α̂p

Ĝ
K̂

′)′.

2.3 Penalized GMM (PGMM) Estimation

In case (b), we propose to estimate β by minimizing the following objective function

Q2,NT (β, λ2) =

N∑
i=1

[ 1
T

T∑
t=1

zit(∆yit − β′
i∆xit)

]′
Wi,NT

[ 1
T

T∑
t=1

zit(∆yit − β′
i∆xit)

]
+

λ2

N

∑∑
1≤i<j≤N

ẅij∥βi − βj∥,
(2.10)

where λ2 ≥ 0 is a tuning parameter, Wi,NT is a q × q p.d. matrix, and ẅij is a data-driven weight

defined by

ẅij = ∥β̈i − β̈j∥−κ, for i, j = 1, . . . , N, (2.11)

where β̈i and β̈j are preliminary consistent estimates of βi and βj , respectively, and κ is a

user-specified positive constant that usually takes value 2 in the literature.

To obtain the adaptive weights {ẅij : i, j ∈ {1, . . . , N}}, we propose to obtain the preliminary

estimates β̈ = (β̈′
1, . . . , β̈

′
N )′ by minimizing the first term in equation (2.10). Thus, for the i-th

element of β̈, we have

β̈i =

[( 1

T

T∑
t=1

∆xitz
′
it

)
Wi,NT

( 1

T

T∑
t=1

zit∆x′it

)]−1( 1

T

T∑
t=1

∆xitz
′
it

)
Wi,NT

( 1

T

T∑
t=1

zit∆yit

)
. (2.12)

The first term in the definition of the objective function in (2.10) is different from the usual

GMM objective function in the panel setting where only one weight matrix is needed and the double
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summation
∑N

i=1

∑T
t=1 occurs twice, one before the weight and the other after the weight matrix.

The reason is that because the true group membership of individual units is unknown, we cannot

apply the usual GMM objective function here.

It is worth emphasizing that the minimization of (2.10) is a convex optimization problem,

hence it does not suffer from multiple local minima issue, and its global minimizer β̃ =

argminQ2,NT (β, λ2), can be efficiently solved. We suppress the dependence of β̂ ≡ β̂(λ2) on

λ2 unless necessary, and choose the tuning parameter using a data-driven method proposed in

Section 4.4.

The penalty in (2.10) shrinks some of the pairs βi−βj to zero, hence we can partition the slope

parameters into groups. In practice, let {α̃1, . . . , α̃K̃
} be the distinct values of β̃. Then, we define

G̃
K̃

= {G̃1, . . . , G̃K̃
} which forms a partition of {1, 2, . . . , N}, with G̃k = {i : β̃i = α̃k, 1 ≤ i ≤ N},

for any 1 ≤ k ≤ K̃. We denote α̃
K̃

= (α̃′
1, . . . , α̃

′
K̃
)′, β̃ = (β̃′

1, . . . , β̃
′
N )′, G̃

K̃
, and K̃, respectively, as

the penalized generalized method of moments (PGMM) estimates of α, β, GK0 , and K0, using the

PAGFL procedure.

Post-Lasso GMM Estimation

Given the fact that we estimate the group structure, we obtain the post-Lasso GMM estimator of

αk for k = 1, . . . , K̃ as

α̃p

G̃k
=

(
Q̃

(k)′

z∆xW̃
(k)
NT Q̃

(k)
z∆x

)−1
Q̃

(k)′

z∆xW̃
(k)
NT Q̃

(k)
z∆y, (2.13)

where K̃, and G̃k are the estimated number of groups, and the groups identities via the PAGFL

procedure, Q̃
(k)
z∆x = T−1

∑
i∈G̃k

∑T
t=1 zit(∆xit)

′, Q̃
(k)
z∆y = T−1

∑
i∈G̃k

∑T
t=1 zit∆yit, and W̃

(k)
NT is a

group-specific q × q p.d. symmetric weight matrix. We denote the post-Lasso GMM estimator of

α by α̃p

K̃
= (α̃p

G̃1

′
, . . . , α̃p

G̃
K̃

′
)′.

3 Asymptotic properties of the PLS estimators

In this section, we provide the asymptotic properties of the PLS estimator and the associated

post-Lasso estimator.
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3.1 Assumptions

Let Q̂i,x̃x̃ = T−1
∑T

t=1 x̃itx̃
′
it and Q̂i,x̃ũ = T−1

∑T
t=1 x̃itũit. Define Jmin = min

1≤l<k≤K0

∥α0
l − α0

k∥ which

denotes the minimum degree of heterogeneity in the slope coefficients between groups. Define the

pK0 × pK0 matrix ΦNT = diag(ΦNT,1, . . . ,ΦNT,K0), where ΦNT,k =
∑

i∈G0
k
Q̂i,x̃x̃, and the pK0 × 1

matrix Ψu
NT = diag(Ψu

NT,1, . . . ,Ψ
u
NT,K0

), where Ψu
NT,k =

∑
i∈Gk

Q̂i,x̃ũ, for k = 1, . . . ,K0.

To study the asymptotic properties of the PLS estimator and the post-Lasso estimator, we make

the following assumptions.

Assumption A.1 (i) 1√
T

∑T
t=1 x̃itũit = Op(1) for each i = 1, . . . , N.

(ii) Q̂i,x̃x̃
P−→ Qi,x̃x̃ > 0 for each i = 1, . . . , N. There exists a positive constant

¯
cx̃x̃ such that

lim(N,T )→∞min1≤i≤N µmin(Q̂i,x̃x̃) ≥
¯
cx̃x̃.

(iii) 1
N

∑N
i=1 ∥Q̂i,x̃ũ∥2 = Op(T

−1).

(iv) Nk/N → τk ∈ [0, 1) for each k = 1, . . . ,K0 as N → ∞.

Assumption A.2 (i) T 1/2Jmin → ∞ as (N,T ) → ∞.

(ii) plim(N,T )→∞T 1/2λ1J
−κ
min = c ∈ [0,∞).

(iii) plim(N,T )→∞Nk T
(κ+1)/2 λ1/N = ∞, for each k = 1, . . . ,K0.

Assumption A.3 Let DK0 = diag(
√
N1, . . . ,

√
NK0) ⊗ Ip, and S denote an arbitrary l × pK0

selection matrix such that ∥S∥ is finite, and l ∈ {1, 2, . . . , pK0} is a fixed integer.

(i) There exists Φ0 > 0 such that ∥ D−1
K0

ΦNT D−1
K0

− Φ0 ∥sp= op(1).

(ii)
√
T S Φ−1

0 D−1
K0

Ψu
NT − S Φ−1

0 BNT
D−→ N(0, SΦ−1

0 Ψ0Φ
−1
0 S′) as (N,T ) → ∞, where BNT =

diag(BNT,1, . . . ,BNT,K0), BNT,k = 1√
NkT

∑
i∈G0

k

∑T
t=1 E(x̃itũit) is either zero or of order

O(
√

Nk/T ) depending on whether xit is strictly exogenous.

Assumption A.1(i) will be mostly satisfied in large dimensional panel data models with weakly

exogenous regressors and can be replaced with sufficient or primitive conditions on the process

{(xit, uit), t ≥ 1} that ensure the central limit theory. Note that this assumption allows both

conditional heteroscedasticity and serial correlation in {uit, t ≥ 1}. Also, Assumption A.1(iii) can
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be easily verified from this assumption. The first part of Assumption A.1(ii) is standard in the

literature, and the second one imposes restriction on the moments of xit, the dependence structure

on the regressors processes, and the relative rates at which N and T pass to infinity. Su et al.

(2016) give details on sufficient and primitive conditions that ensure this assumption. Assumption

A.1(iv) implies that as N → ∞, the number of individuals within each group can be either fixed

or diverge to infinity.3 Assumption A.2 mainly specifies conditions on Jmin, λ1, N, and T. We

use the probability limit in A.2(ii)–(iii) because we allow λ1 to be data-driven and hence random.

Assumption A.2(i) allows the minimum degree of heterogeneity size, Jmin, to shrink to zero as

T → ∞, but at a rate slower than T−1/2. Assumptions A.2(ii) and A.2(iii) are used to show the

consistency and classification consistency of the PAGFL. In addition, we allow the number of groups

K0 to diverge to infinity at a slow rate. Noting that when the dimension of the PLS or post-Lasso

diverge to infinity, we cannot derive the asymptotic normality directly, we make Assumption A.3

to provide conditions to ensure the asymptotic normality for any linear combination of the PLS or

post-Lasso estimators, but it can be replaced with various commonly primitive conditions. If K0

remains fixed as N → ∞, we can replace the selection matrix S by an identity matrix.

3.2 Consistency

The following theorem establishes the consistency of β̂i for i = 1, . . . , N.

Theorem 3.1 Suppose that Assumptions A.1 and A.2(ii) hold. Then for i = 1, . . . , N,

(i) β̂i − β0
i = Op(T

−1/2),

(ii) 1
N

∑N
i=1 ∥β̂i − β0

i ∥2 = Op(T
−1).

Theorem 3.1(i) and (ii), respectively, establish the pointwise and mean square convergence rates

of β̂i.

The following theorem establishes the classification consistency.

Theorem 3.2 Suppose that Assumptions A.1 and A.2(ii)–(iii) hold. Then

P
(
∥β̂i − β̂j∥ = 0 for all i& j ∈ G0

k, k ∈ {1, . . . ,K0}
)
→ 1, as (N,T ) → ∞.

3A main reason that our method allows K0 to diverge, is because we require T to be sufficiently large enough to
produce consistent preliminary estimates of the slope coefficients.
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Theorem 3.2 says that with probability approaching one all the zero vectors in {∥βi − βj∥, 1 ≤

i, j ≤ N} must be estimated as exactly zero by the PLS method so that the estimated number

of groups cannot be large than K0 when T is sufficiently large. These results together with the

consistency results in Theorem 3.1 imply that the PAGFL has the ability to consistently identify

the true group structure with the correct number of individual units within each group when the

minimum group size Jmin does not shrink to zero too fast.

Corollary 3.3 Suppose that Assumptions A.1 and A.2 hold. Then

(i) lim(N,T )→∞ P (K̂ = K0) = 1,

(ii) lim(N,T )→∞ P (Ĝ1 = G0
1, . . . , ĜK0 = G0

K0
) = 1.

The above corollary implies that, we can determine the correct number of groups, as long as the

minimum degree of heterogeneity, Jmin, remains fixed or shrinks to zero at a rate slower than T−1/2

as T → ∞.

3.3 Limiting Distribution of the PLS and post-Lasso Estimators

In this section, we study the asymptotic distribution of the PLS and post-Lasso estimators. Note

that if each individual’s group membership is known, the oracle estimator is the within group

estimator of α0
k which can be formulated as ᾱk =

(∑
i∈G0

k

∑T
t=1 x̃itx̃

′
it

)−1∑
i∈G0

k

∑T
t=1 x̃itỹit.

The following theorem reports the limiting distribution of the post-Lasso estimator α̂p

K̂
.

Theorem 3.4 Suppose that Assumptions A.1–A.3 hold. Then, we have

√
TSDK0(α̂

p

K̂
−α0)− SDK0Φ

−1
NTDK0BNT

D−→ N(0, SΦ−1
0 Ψ0Φ

−1
0 S′). (3.1)

To report the limiting distribution of the PLS estimator, α̂
K̂
, we make the following Assumption

A.4 which is similar to Assumption A.2(ii), with the difference that we require that J−κ
min or λ1 to

tend to zero at a faster rate than the one we need for the post-Lasso estimator. This is because the

PLS estimator includes the penalty term which is the two summations over the individuals, and is

of order Op(N
2). Hence, for the penalty term to vanish we need the group slope coefficients to be

sufficiently separated.
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Assumption A.4 plim(N,T )→∞(NT )1/2λ1J
−κ
min = 0.

Theorem 3.5 Suppose that Assumptions A.1–A.4 hold. Then, we have

√
TSDK0(α̂K̂

−α0)− SDK0Φ
−1
NTDK0BNT

D−→ N(0, SΦ−1
0 Ψ0Φ

−1
0 S′). (3.2)

Since the dimensions of the PLS and post-Lasso estimators diverge to infinity when K0 → ∞,

following the literature on inference with a diverging number of parameters, we prove the asymptotic

normality for any arbitrary linear combinations of elements of α̂
K̂

or α̂p

K̂
. The asymptotic result

in Theorem 3.5 holds under Assumption A.5, which is because the PLS estimator includes the

penalty of order Op(N
2), and for the penalty term to vanish we need J−κ

min or λ1 to offset the linear

combinations of
√
Nk rates of convergency.

Theorem 3.4 and Theorem 3.5 indicate that both the PLS estimator and the post-Lasso

estimator achieve the same limiting distribution as the oracle within group estimator. Therefore, we

say that the PLS estimator has the asymptotic oracle property. We note that the oracle estimator

is the infeasible estimator, because it can be obtained if the group structure is known. In addition,

BNT,k is not equal to zero in case of dynamic panel data models. In fact, it is well known in the

literature that the fixed effect estimator has an asymptotic bias of order O(1/T ). This suggests

that in dynamic panel models BNT,k = O(
√
Nk/T ) and bias correction is required, unless the rate

at which T goes to infinity is faster than that of Nk. There are various methods proposed in the

literature to estimate the bias term such as Kiviet (1995), Hahn and Kuersteiner (2002), Phillips

and Sul (2007), Lee (2012), Gourieroux et al. (2010) and Han et al. (2014), among others, and we

refer the readers to these papers.

3.4 Choosing the Tuning Parameter λ1

Let α̂p

K̂λ1

≡ α̂p

K̂λ1

(Ĝ
K̂λ1

) =
(
α̂p
1(ĜK̂λ1

)′, . . . , α̂p

K̂λ1

(Ĝ
K̂λ1

)′
)′

denote the post-Lasso estimates

of the regression coefficients based on the group structure in Ĝ
K̂λ1

≡ Ĝ
K̂λ1

(λ1) =

{Ĝ1(λ1), . . . , ĜK̂λ1
(λ1)}, where we make the dependence of the estimates on λ1 explicit. Let

σ̂2
Ĝ
K̂λ1

= 1
NT

∑K̂λ1
k=1

∑
i∈Ĝk(λ1)

∑T
t=1(ỹit − α̂p

k(ĜK̂λ1
)′x̃it)

2. Following Wang et al. (2007), Zhang et
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al. (2010), Qian and Su (2015), and Qian and Su (2016), we propose to select the tuning parameter

λ1 by minimizing the following information criterion (IC):

IC1(λ1) = σ̂2
Ĝ
K̂λ1

+ ρ1,NT pK̂λ1 , (3.3)

where ρ1,NT is a tuning parameter.

We proceed to describe the asymptotic properties of (3.3). Let Λ = [0, λ1,max] be a bounded

interval in R+. We divide Λ into three subsets Λ0, Λ−, and Λ+ which are defined as follows

Λ0 = {λ1 ∈ Λ : K̂λ1 = K0}, Λ− = {λ1 ∈ Λ : K̂λ1 < K0}, Λ+ = {λ1 ∈ Λ : K̂λ1 > K0}.

The sets Λ0, Λ−, and Λ+ denote subsets of Λ in which the true, under-, and over-number

of groups are produced by our PAGFL procedure, respectively. They are random because

K̂λ1 has to be determined based on the random sample, but we suppress their dependence on

the sample sizes N and T for notational simplicity. Let G(K) = {G(K,1), . . . , G(K,K)} be any

K-partition of the set of individual indices {1, . . . , N}, and let GK denote the collection of

such partitions. Let σ̂2
G(K)

= (NT )−1
∑K

k=1

∑
i∈G(K,k)

∑T
t=1(ỹit − α̂′

G(K,k)
x̃it)

2, where α̂G(K,k)
=

(
∑

i∈G(K,k)

∑T
t=1 x̃itx̃

′
it)

−1
∑

i∈G(K,k)

∑T
t=1 x̃itỹit.

Let λ0
1,NT denote an element in Λ0 that satisfies the conditions on λ1 is Assumptions A.2(ii)–(iii).

We make the following assumptions, to state the next asymptotic result.

Assumption A.5 As (N,T ) → ∞, min1≤K≤K0 infG(K)∈GK
σ̂2
G(K)

P−→
¯
σ2 > σ2

0, where σ2
0 =

plim(N,T )→∞
1

NT

∑N
i=1

∑T
t=1 ũ

2
it.

Assumption A.6 As (N,T ) → ∞, K0 ρ1,NT → 0, and Nρ1,NT → ∞.

Assumption A.5 is intuitively clear and applies under primitive conditions in a variety of models.

It requires that all under-fitted models yield asymptotic mean squared errors that are larger than

that of the true model, σ2
0. Assumption A.6 reflects the usual conditions for the consistency of

model selection, that is, the penalty coefficient ρ1,NT cannot shrink to zero either too fast or too

slowly.
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Theorem 3.6 Suppose that Assumptions A.1, A.2(i), A.3, A.5, and A.6 hold. Then,

P
(

inf
λ1∈Λ−∪Λ+

IC1(λ1) > IC1(λ
0
1,NT )

)
→ 1 as (N,T ) → ∞. (3.4)

Theorem 3.6 indicates that the tuning parameters (λ1’s) that yield the over-estimated or

under-estimated number of group structures fail to minimize the information criterion with

probability approaching one. Consequently, the minimizer of IC1(λ1) can only be the one that

produces K0 number of groups. We note that the proof of Theorem 3.6 does not require λ1 to

satisfy Assumptions A.2(ii)–(iii).

4 Asymptotic properties of the PGMM estimators

In this section, we provide the asymptotic properties of the PGMM estimator and the associated

post-Lasso estimator.

4.1 Assumptions

Let Q̃i,z∆x = T−1
∑T

t=1 zit∆x′it, Q̃i,z∆y = T−1
∑T

t=1 zit∆yit, Q̃i,z∆u = T−1
∑T

t=1 zit∆uit, Q̄i,z∆x =

T−1
∑T

t=1 E(zit∆x′it), and Q̄i,z∆y = T−1
∑T

t=1 E(zit∆yit). Let ξit = (∆yit, (∆xit)
′, z′it)

′, ρ(ξit, βi) =

zit(∆yit − β′
i∆xit), and ρ̄i,T (βi) = T−1/2

∑T
t=1

[
ρ(ξit, βi) − E(ρ(ξit, βi))

]
. For each group

k = 1, . . . ,K0, let W
(k)
NT be a q × q p.d. matrix, Q

(k)
z∆x,NT = T−1

∑
i∈G0

k

∑T
t=1 zit(∆xit)

′, and

Q
(k)
z∆u,NT = T−1

∑
i∈G0

k

∑T
t=1 zit∆uit. Define the pK0 × pK0 matrix ΥNT ≡ ΥNT (G0

K0
) =

diag
(
ΥNT,1(G0

K0
), . . . ,ΥNT,K0(G0

K0
)
)
, and the pK0 × 1 vector Ξu

NT ≡ Ξu
NT (G0

K0
) =

diag
(
Ξu
NT,1(G0

K0
), . . . ,Ξu

NT,K0
(G0

K0
)
)
, where ΥNT,k(G0

K0
) = Q

(k)
z∆x,NT

′
W

(k)
NTQ

(k)
z∆x,NT , and

Ξu
NT,k(G0

K0
) = Q

(k)
z∆x,NT

′
W

(k)
NTQ

(k)
z∆u,NT . Similarly, define the pK0×pK0 matrix ῩNT ≡ ῩNT (G0

K0
) =

diag
(
ῩNT,1(G0

K0
), . . . , ῩNT,K0(G0

K0
)
)
, where ῩNT,k(G0

K0
) =

∑
i∈G0

k
Q̃i,z∆x

′
Wi,NT Q̃i,z∆x,

and the pK0 × 1 vector Ξ̄u
NT ≡ Ξ̄u

NT (G0
K0

) = diag
(
Ξ̄u
NT,1(G0

K0
), . . . , Ξ̄u

NT,K0
(G0

K0
)
)
, where

Ξ̄u
NT,k(G0

K0
) =

∑
i∈G0

k
Q̃′

i,z∆xWi,NT Q̃i,z∆u.

To study the asymptotic properties of the PGMM and the post-Lasso estimators, we make the

following assumptions.

Assumption B.1 (i) E(ρ(ξit, β0
i )) = 0, for each i = 1, . . . , N and t = 1, . . . , T.
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(ii) supβi
∥ρ̄i,T (βi)∥ = Op(1), and

1
N

∑N
i=1 ∥ρ̄i,T (βi)∥2 = Op(1), for any βi and i = 1, . . . , N.

(iii) Q̃i,z∆x
P−→ Q̄i,z∆x > 0, for each i = 1, . . . , N. There exists a positive constant

¯
cQ̄ such that

lim(N,T )→∞min1≤i≤N µmin(Q̄
′
i,z∆xQ̄i,z∆x) =

¯
cQ̄.

(iv) There exist non-random matrices Wi such that max1≤i≤N ∥Wi,NT − Wi∥ = op(1), and

lim inf(N,T )→∞min1≤i≤N µmin(Wi) =
¯
cW > 0.

(v) Nk/N → τk ∈ [0, 1), for each k = 1, . . . ,K0 as N → ∞.

Assumption B.2 (i) T 1/2Jmin → ∞ as (N,T ) → ∞.

(ii) plim(N,T )→∞T 1/2λ1J
−κ
min = c ∈ [0,∞).

(iii) plim(N,T )→∞NkT
(κ+1)/2λ2/N = ∞, for each k = 1, . . . ,K0.

Assumption B.3 Let DK0 = diag(
√
N1, . . . ,

√
NK0) ⊗ Ip, and S denote an arbitrary l × pK0

selection matrix such that ∥S∥ is finite, where l ∈ {1, 2, . . . , pK0} is a fixed integer.

(i) There exists Υ0 > 0 such that ∥D−3
K0

ΥNTD
−1
K0

−Υ0∥sp = op(1).

(ii)
√
TSΥ−1

0 D−3
K0

Ξu
NT

D−→ N(0, SΥ−1
0 V0Υ

−1
0 S′).

Assumption B.4 (i) There exists Ῡ0 > 0 such that ∥D−1
K0

ῩNTD
−1
K0

− Ῡ0∥sp = op(1).

(ii)
√
TSῩ−1

0 D−1
K0

Ξ̄u
NT − SῩ−1

0 BNT
D−→ N(0, SΥ̃−1

0 V̄0Ῡ
−1
0 S′).

Assumption B.1(i) specifies moment conditions to identify β0
i . Assumption B.1(ii) is needed as

we do not specify the data structure, where its first part can generally be verified, see Su et al. (2016)

for a discussion. Assumption B.1(iii) together with Assumption B.1(i) provide a rank condition for

the identification of β0
i . If one sets Wi,NT = Iq, then Assumption B.1(iv) is automatically satisfied.

Assumption B.1(v) implies that as N → ∞, the number of individuals within each group can

be either fixed or diverge to infinity. Assumption B.3 and Assumption B.4 specify conditions for

deriving the limiting distributions of the post-Lasso estimator and Lasso estimator, respectively.

These assumptions can be verified under various primitive conditions, see Su et al. (2016) who give

details on some conditions. Assumption B.2 parallels Assumption A.2, which specifies conditions

on Jmin, λ2, N, and T.
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4.2 Consistency

The following theorem establishes the consistency of the PGMM estimator, β̃i for i = 1, . . . , N.

Theorem 4.1 Suppose that Assumptions B.1 and B.2(ii) hold. Then

(i) β̃i − β0
i = Op(T

−1/2) for i = 1, . . . , N,

(ii) 1
N

∑N
i=1 ∥β̃i − β0

i ∥2 = Op(T
−1).

Theorem 4.1(i) and (ii), respectively, establish the pointwise and mean square convergence rates

of {β̃i : i = 1, . . . , N}.

The following theorem establishes the classification consistency.

Theorem 4.2 Suppose Assumptions B.1 and B.2(i)–(ii) hold. Then

P
(
∥β̃i − β̃j∥ = 0 for all i& j ∈ G0

k, k ∈ {1, . . . ,K0}
)
→ 1, as (N,T ) → ∞.

Theorem 4.2 says that with probability approaching one all the zero vectors in {∥βi − βj∥, 1 ≤

i, j ≤ N} must be estimated as exactly zero by the PGMM method so that the estimated number

of groups cannot be different from K0 when T is sufficiently large. This result together with the

consistency result in Theorem 4.1 imply that the PAGFL has the ability to identify the true group

structure with the correct number of individual units within each group consistently when the

minimum degree of heterogeneity, Jmin, does not shrink to zero too fast.

Corollary 4.3 Suppose that Assumptions B.1 and B.2 hold. Then

(i) lim(N,T )→∞ P (K̃ = K0) = 1,

(ii) lim(N,T )→∞ P (G̃1 = G0
1, . . . , G̃K0 = G0

K0
) = 1.

The above corollary implies that, as long as Jmin remains fixed or shrinks to zero at a rate slower

than T−1/2 as T → ∞, we can determine the correct number of groups.
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4.3 Limiting Distribution of the PGMM and post-Lasso Estimators

In this section, we study the asymptotic distribution of the PGMM and post-Lasso estimators.

Note that if each individual’s group membership is known, the oracle estimator is the solution to

a usual GMM objective function which can be formulated as below

ᾰk =

[
Q

(k)′

z∆x,NTW
(k)
NTQ

(k)
z∆x,NT

]−1

Q
(k)′

z∆x,NTW
(k)
NTQ

(k)
z∆y,NT , (4.1)

where Q
(k)
z∆y,NT = T−1

∑
i∈G0

k

∑T
t=1 zit(∆yit) for each k = 1, . . . ,K0.

The following theorem reports the limiting distribution of the post-Lasso estimator, α̃p

K̃
.

Theorem 4.4 Suppose Assumptions B.1–B.3 hold. Then

√
TSDK0(α̃

p

K̃
−α0)

D−→ N(0, SΥ−1
0 V0Υ

−1
0 S′).

The above theorem says that the post-Lasso GMM estimator α̃p

K̃
asymptotically has the same

limiting distribution as the infeasible oracle estimator ᾰ = (ᾰ′
1, . . . , ᾰ

′
K0

)′, which further indicates

that the post-lasso GMM estimator has the oracle property.

The following theorem reports the limiting distribution of the PGMM estimator, α̃
K̃
, but we

need to make the following assumotion:

Assumption B.5 plim(N,T )→∞(NT )1/2λ2J
−κ
min = 0.

Similar to Assumption A.4 in the PLS estimation, we need Assumption B.5 for the penalty

term in the Lasso estimator to vanish.

Theorem 4.5 Suppose Assumptions B.1–B.2, and B.4–B.5 hold. Then

√
TSDK0(α̃K̃

−α0)− SDK0Ῡ
−1
NTDK0BNT

D−→ N(0, SῩ−1
0 V̄0Ῡ

−1
0 S′).

Apparently, the PGMM estimator does not have the same asymptotic distribution as the oracle

estimator under general conditions. This is because the true group membership of individual units

is unknown, and hence the PGMM estimator is the solution to the objective function in (2.10)

which is different from the usual GMM objective function where only one weight matrix is needed
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and the double summation occurs twice, one before the weight and the other after the weight

matrix. However, since the post-Lasso GMM estimator is the solution to the usual GMM objective

function for the individuals within each group, and the procedure consistently estimate the true

group memberships, the post-Lasso GMM estimator has the oracle property.

Remark 4.1 In the special case where for each i ∈ G0
k and k = 1, . . . ,K0, conditions

(i)Wi,NT = W
(k)
NT , (ii)N−1

k ῩNT,k(G
0
K0

) shares the same probability limit as N−2
k ΥNT,k(G

0
K0

),

(iii)N
−1/2
k Ξ̄u

NT,k(G
0
K0

) shares the same probability limit as N
−3/2
k Υu

NT,k(G
0
K0

), and (iv)BNT,k = 0,

hold, then Ῡ0 = Υ0, and V̄0 = V0. Therefore, the PGMM estimator has the oracle property.

4.4 Choosing the Tuning Parameter λ2

Let α̃p

K̃λ2

≡ α̃p

K̃λ2

(G̃
K̃λ2

) =
(
α̃p
1(G̃K̃λ2

)′, . . . , α̃p

K̃λ2

(G̃
K̃λ2

)′
)′

denote the post-Lasso estimates

of the regression coefficients based on the group structure in G̃
K̃λ2

≡ G̃
K̃λ2

(λ2) =

{G̃1(λ2), . . . , G̃K̃λ2
(λ2)}, where we make the dependence of the estimates on λ2 explicit. Let

σ̃2
G̃
K̃λ2

= (NT )−1
∑K̃λ2

k=1

∑
i∈G̃k(λ2)

∑T
t=1(∆yit − α̃p

k(G̃K̃λ2
)′∆xit)

2. We propose to select the tuning

parameter λ2 by minimizing the following IC:

IC2(λ2) = σ̃2
G̃
K̃λ2

+ ρ2,NT pK̃λ2 , (4.2)

where ρ2,NT is a tuning parameter.

We proceed to describe the asymptotic properties of (4.2). Let Λ̄ = [0, λ2,max] be a bounded

interval in R+. We divide Λ into three subsets Λ̄0, Λ̄−, and Λ̄+ which are defined as follows

Λ̄0 = {λ2 ∈ Λ̄ : K̃λ2 = K0}, Λ̄− = {λ2 ∈ Λ̄ : K̃λ2 < K0}, Λ̄+ = {λ2 ∈ Λ̄ : K̃λ2 > K0}.

The sets Λ̄0, Λ̄−, and Λ̄+ denote subsets of Λ in which the true, under-, and over-number of

groups are produced by our PAGFL procedure, respectively. We suppress their dependence

on the sample sizes N and T for notational simplicity. Let G(K) = {G(K,1), . . . , G(K,K)} be

any K-partition of the set of individual indices {1, . . . , N}, and let GK denote the collection

of such partitions. Let σ̃2
G(K)

= (NT )−1
∑K

k=1

∑
i∈G(K,k)

∑T
t=1(∆yit − α̃′

G(K,k)
∆xit)

2, where

α̃G(K,k)
=

(
Q̃

(K,k)′

z∆x W̃
(K,k)
NT Q̃

(K,k)
z∆x

)−1
Q̃

(K,k)′

z∆x W̃
(K,k)
NT Q̃

(K,k)
z∆y , Q̃

(K,k)
z∆x = T−1

∑
i∈G(K,k)

∑T
t=1 zit∆x′it,

Q̃
(K,k)
z∆y = T−1

∑
i∈G(K,k)

∑T
t=1 zit∆yit, and W̃

(K,k)
NT is defined as before but with k = 1, 2, . . . ,K.
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Let λ0
2,NT denote an element in Λ̄0 that satisfies the conditions on λ2 in Assumptions B.2(ii)–(iii).

We make the following assumptions, to state the next asymptotic result.

Assumption B.6 As (N,T ) → ∞, min1≤K≤K0 infG(K)∈GK
σ̃2
G(K)

P−→
¯̄
σ2 >

¯
σ2
0, where

¯
σ2
0 =

plim(N,T )→∞
1

NT

∑N
i=1

∑T
t=1∆u2it.

Assumption B.7 As (N,T ) → ∞, K0 ρ2,NT → 0, and Nρ2,NT → ∞.

Assumptions B.6 and B.7 parallel earlier Assumptions A.5–A.6. The following theorem implies

that the minimizer of IC2(λ2) can only be the one that produces the correct number of estimated

group structure.

Theorem 4.6 Suppose that Assumptions B.1, B.2(i), B.3, B.6, and B.7 hold. Then,

P
(

inf
λ2∈Λ̄−∪Λ̄+

IC2(λ2) > IC2(λ
0
2,NT )

)
→ 1 as (N,T ) → ∞. (4.3)

5 Computation and Algorithm

The objective functions in (2.6) and (2.10) are not separable in βi, which makes it difficult

to compute the estimates directly. Thus, we define a new set of parameters δij = βi − βj

and reparameterize the criterion functions separately for PLS and PGMM and describe the

implementation below.

5.1 PLS Computation

Reparametrizing the objective function in (2.6), is equivalent to the constraint optimization problem

below

minS1(β, δ) =
1

2

N∑
i=1

T∑
t=1

(ỹit − β′
ix̃it)

2 + λ∗
1

∑∑
1≤i<j≤N

ẇij∥δij∥,

subject to βi − βj − δij = 0,
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where δ = {δij , i < j}′ and λ∗
1 = Tλ1/2N. By the augmented Lagrangian method, the estimates of

the parameters can be obtained by minimizing

L1(β, δ,ν) = S1(β, δ) +
∑∑
1≤i<j≤N

ν ′ij(βi − βj − δij) +
ϑ

2

∑∑
1≤i<j≤N

∥βi − βj − δij∥2,

where ν = {ν ′ij , i < j}′ are lagrange multipliers and ϑ is the penalty parameter. We can obtain the

estimates of (β, δ,ν) through iterations by the ADMM, as we describe in the rest of this section.

The iteration process consists of updating β, δ and ν iteratively. For a given (δ,ν), we obtain

the updates of β by setting the derivative ∂L1(β, δ,ν)/∂β to zero, where

L1(β, δ,ν) =
1

2
∥ỹ − X̃β∥2 + ϑ

2
∥Λβ − δ + ϑ−1ν∥2 + C,

and C is a constant independent of β, ỹ = (ỹ′1, . . . , ỹ
′
N )′, ỹi = (ỹi1, . . . , ỹiT )

′ for each i = 1, . . . , N,

X̃ = diag(X̃1, . . . , X̃N ), X̃i = (x̃i1, . . . , x̃iT )
′ for each i = 1, . . . , N. Besides, Λ = ∇ ⊗ Ip, where

∇ = {(ei − ej), 1 ≤ i < j ≤ N}′ and ei is an N × 1 vector whose ith element is one and the

remaining ones are zero. Further, we note that the minimizer of L1(β, δ,ν) with respect to δij , for

given (β,ν), has a closed form solution and is unique. In practice, for given (β,ν), the minimization

problem with respect to δij is equivalent to the following minimization

min
ϑ

2

∑∑
1≤i<j≤N

∥ζij − δij∥2 + λ∗
1

∑∑
1≤i<j≤N

ẇij∥δij∥,

where ζij = βi − βj + ϑ−1νij . Thus, the closed form solution is

δ̂ij = ST (ζij , λ
∗
1/ϑ), (5.1)

where ST (a, b) = (1− b/∥a∥)+ a is the groupwise soft thresholds rule, and (c)+ = 1(c > 0)c.

We track the progress of the ADMM based on the primal residual at stepm, r(m) = Λβ(m)−δ(m),

and stop the algorithm when ∥r(m)∥ < ϵ. The algorithm can be summarized as following:

PLS Algorithm:

1. Initialization: Find initial estimates of β
(0)
i by minimizing the first term of (2.6) for all

i = 1, . . . , N. Let the initial values of ν(0) = 0, and δ
(0)
ij = β

(0)
i − β

(0)
j .
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2. Iterations: At iteration m ≥ 1, for given δ(m−1) and ν(m−1),

(a) update β(m) which is the minimizer of L1(β, δ
(m),ν(m)) and takes the form below

β(m) =
[
X̃ ′X̃ + ϑΛ′Λ

]−1[
X̃ ′ỹ + ϑΛ′

(
δ(m−1) − ϑ−1ν(m−1)

)]
;

(b) update the value of δij at the (m)th iteration by (5.1), after replacing

ζij = β
(m)
i − β

(m)
j + ϑ−1ν

(m−1)
ij ;

(c) update the value νij by

ν
(m)
ij = ν

(m−1)
ij + ϑ(β

(m)
i − β

(m)
j − δ

(m)
ij );

(d) terminate the algorithm if the stopping rule ∥r(m)∥ < ϵ is met at step m. Then,

(β(m), δ(m),ν(m)) are the PAGFL estimates, denoted by (β̂, δ̂, ν̂).

Proposition 1 The primal residual r(m) = Λβ(m) − δ(m) and the dual residual s(m) = ϑΛ(β(m) −

β(m−1)) of the ADMM satisfy the following conditions:

(i) limm→∞ ∥r(m)∥2 = 0,

(ii) limm→∞ ∥s(m)∥2 = 0.

Proposition 1 shows that both the primal and dual feasibility are achieved by the algorithm.

Further, as the objective function in (2.6) is convex, the algorithm converges to an optimal point.

5.2 PGMM Computation

Similarly, by reparametrizing the objective function in (2.10), the minimization is equivalent to the

constraint optimization problem below

minS2(β, δ) =
1

2

N∑
i=1

[ T∑
t=1

zit(∆yit − β′
i∆xit)

]′
Wi,NT

[ T∑
t=1

zit(∆yit − β′
i∆xit)

]
+ λ∗

2

∑∑
1≤i<j≤N

ẅij∥δij∥,

subject to βi − βj − δij = 0,
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where δ = {δij , i < j}′, and λ∗
2 = T 2λ2/2N. By the augmented Lagrangian method, the estimates

of the parameters can be obtained by minimizing

L2(β, δ,ν) = S2(β, δ) +
∑∑
1≤i<j≤N

ν ′ij(βi − βj − δij) +
ϑ

2

∑∑
1≤i<j≤N

∥βi − βj − δij∥2,

where ν = {ν ′ij , i < j}′ are lagrange multipliers and ϑ is the penalty parameter. We can obtain the

estimates of (β, δ,ν) through iterations by the ADMM.

The iteration process consists of updating β, δ and ν iteratively. For a given (δ,ν), we obtain

the updates of β by setting the derivative ∂L2(β, δ,ν)/∂β to zero, where

L2(β, δ,ν) =
1

2
(∆y −∆Xβ)′Z ′WZ(∆y −∆Xβ) +

ϑ

2
∥Λβ − δ + ϑ−1ν∥2 + C,

where C is a constant independent of β, ∆y = (∆y′1, . . . ,∆y′N )′, ∆yi = (∆yi1, . . . ,∆yiT )
′, Z =

diag(Z1, . . . , ZN ), Zi = (zi1, . . . , ziT )
′, ∆X = diag(∆X1, . . . ,∆XN ), ∆Xi = (∆xi1, . . . ,∆xiT )

′ for

each i = 1, . . . , N, and W = diag(W1,NT , . . . ,WN,NT ). Moreover, we note that the minimizer

of L2(β, δ,ν) with respect to δij , for given (β,ν), has a closed form solution and is unique. In

practice, for given (β,ν), the minimizer problem with respect to δij is equivalent to the following

minimization

ϑ

2

∑∑
1≤i<j≤N

∥ζij − δij∥2 + λ∗
2

∑∑
1≤i<j≤N

ẅij∥δij∥,

where ζij = βi − βj + ϑ−1νij . Thus, the closed form solution is

δ̃ij = ST (ζij , λ
∗
2/ϑ). (5.2)

Similarly, we track the progress of the ADMM based on the primal residual at step m, r(m) =

Λβ(m) − δ(m), and stop the algorithm when ∥r(m)∥ < ϵ. The algorithm can be summarized in

below:

PGMM Algorithm:

1. Initialization: Find initial estimates of β
(0)
i by minimizing the first term of (2.10) for all

i = 1, . . . , N. Let the initial values of ν(0) = 0, and δ
(0)
ij = β

(0)
i − β

(0)
j .

2. Iterations: At iteration m ≥ 1, for given δ(m−1) and ν(m−1),
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(a) update β(m), which is the minimizer of L2(β, δ
(m),ν(m)), takes the form below

β(m) =
[
∆X ′Z ′WZ∆X + ϑΛ′Λ

]−1[
∆X ′Z ′WZ∆y + ϑΛ′

(
δ(m−1) − ϑ−1ν(m−1)

)]
;

(b) update the value of δij at the (m)th iteration by (5.2), after replacing

ζij = β
(m)
i − β

(m)
j + ϑ−1ν

(m−1)
ij ;

(c) update the value νij by

ν
(m)
ij = ν

(m−1)
ij + ϑ(β

(m)
i − β

(m)
j − δ

(m)
ij );

(d) terminate the algorithm if the stopping rule ∥r(m)∥ < ϵ is met at step m. Then,

(β(m), δ(m),ν(m)) are the PAGFL estimates, denoted by (β̃, δ̃, ν̃).

Proposition 2 The primal residual r(m) = Λβ(m)−δ(m) and the dual residual s(m) = ϑΛ(β(m+1)−

β(m)) of the ADMM satisfy the following conditions:

(i) limm→∞ ∥r(m)∥2 = 0,

(ii) limm→∞ ∥s(m)∥2 = 0.

Proposition 2 shows that both the primal and dual feasibility are achieved by the algorithm.

Further, as the objective function in (2.10) is convex, the algorithm converges to an optimal point.

6 Monte Carlo Simulation

In this section, we investigate the finite sample performance of our PAGFL method. We consider

six Monte Carlo experiments which are similar to those considered in Su et al. (2016) and Wang

et al. (2018). The first three experiments consider data generating processes (DGPs) of static

panel data models and deal with the PLS estimation. The fourth experiment is concerned with

the PLS and PGMM estimation of dynamic panel data models. In this experiment, we focus on

DGPs with a lagged dependent variable and multiple exogenous regressors. Finally, in the last two

experiments, we consider both static and dynamic panel data DGPs where the number of group
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structures is relatively large. For each experiment, we evaluate the performance of our PAGFL

method by considering the following three criteria:

(i) Estimation Consistency: We report the Root Mean Squared Errors (RMSE), and the bias of

the estimated regression coefficients, which are measured by

RMSE (β̂) =

√√√√ 1

Np

N∑
i=1

∥β̂i − β0
i ∥2, (6.1)

Bias =

√√√√ 1

Np

N∑
i=1

p∑
l=1

(β̂i,l − β0
i,l). (6.2)

(ii) Consistency of K̂: We report the empirical percentage of selecting the true number of groups.

That is, in our simulation designs we measure the percentage of the number of times K̂ = K0.

(iii) Classification Consistency: To measure the similarity between the estimated grouping

structure, Ĝ, and the true grouping structure, G0, similar to Ke et al. (2015) and Wang et

al. (2018), we report the normalized mutual information (NMI) measure. The NMI measure

for two classification A = {A1, A2, . . . }, and B = {B1, B2, . . . }, on the same set {1, . . . , N},

is defined as

NMI(A,B) = I(A,B)√
H(A)H(B)

,

where

I(A,B) =
∑
i,j

(|Ai ∩Bj |/N) ln
( |Ai ∩Bj |/N
(|Ai|/N)(|Bi|/N)

)
and H(A) = −

∑
i

|Ai|
N

ln(
|Ai|
N

).

We note that I(A,B) = H(A) = H(B), when A and B have the same classification, and hence

NMI(A,B) = 1. We report NMI(Ĝ,G0) for all experiments.

We select the tuning parameters λ1 and λ2 by minimizing the information criteria in (3.3) and

(4.2), respectively. In practice, we search for the optimal tuning parameter on a 50 logarithmically

spaced grids in the interval [0, λmax], where λmax is a tuning parameter that classifies all individuals

in one group (i.e. the estimated number of groups is one). We find λmax for each simulation by
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trial and error. We choose ρ1,NT = ρ2,NT = CNT ln(NT )/NT in (3.3) or (4.2) with CNT = c
√
NT.

We consider different values of c in our simulations, and the results suggest that the performance

of our method is not sensitive to the choice of c, especially when N and/or T is large. Due to space

limitation, we only report the results when c = 0.7, but the complete results are available in the

Online Supplemental Appendix.

We set κ = 2 in the construction of the adaptive weights {ẇij : i, j ∈ {1, . . . , N}} and {ẅij :

i, j ∈ {1, . . . , N}}, which are used for the PLS and PGMM estimations, respectively. The number

of Monte Carlo simulations in all experiments is 200, and we consider all combinations of (N,T )

with N = {50, 100, 200} and T = {20, 40, 80}.

We consider the following DGPs:

• DGP 1 (Static panel with two exogenous regressors): The model is generated from

the following static panel DGP with two exogenous regressors:

yit = βi,1xit,1 + βi,2xit,2 + µi + uit, i = 1, . . . , N, t = 1, . . . , T,

where the regressors xit = (xit,1, xit,2)
′ are generated as xit,1 = 0.2ηi + eit,1 and xit,2 =

0.2ηi + eit,2 where eit,1 and eit,2 are both i.i.d. N(0, 1) and mutually independent. The fixed

effects and the idiosyncratic errors follow the standard normal distribution and are mutually

independent across i and t. The true number of groups is K0 = 3, with the true coefficients

(α0
1, α

0
2, α

0
3) =

0.4
1.6

 ,

1
1

 ,

1.6
0.4

 .

• DGP 2: Same as DGP 1, but uit ∼ AR(1). Specifically, for each i and t: uit = 0.5ui,t−1+ϵit,

with ϵit ∼ i.i.d. N(0, 1).

• DGP 3: Same as DGP 1, but uit ∼ GARCH(1, 1). Specifically, for each i and t: uit =
√
hitϵit, hit = 0.05 + 0.05u2i,t−1 + 0.9hi,t−1, with ϵit ∼ i.i.d. N(0, 1).

• DGP 4 (Dynamic Panel AR(1) with two exogenous regressors): The model is

generated from the following equation

yit = β0
i1yi,t−1 + β0

i2xit,1 + β0
i3xit,2 + ηi(1− β0

i1) + uit,
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where the exogenous regressors xit,1 and xit,2 follow the standard normal distributions,

mutually independent, and are independent of the error term. The initial values take the

form yi0 = β0
i2xit,1+β0

i3xit,2+ηi+ui0. The fixed effects and the idiosyncratic errors follow the

standard normal distribution and are mutually independent across i and t. The true number

of groups is K0 = 3, with the true coefficients

(α0
1, α

0
2, α

0
3) =



0.8

0.4

1.6

 ,


0.6

1

−1

 ,


0.4

1.6

1


 .

• DGP 5: Same as DGP 1, but K0 = 8 with the true coefficients

(α0
1, α

0
2, α

0
3, α

0
4, α

0
5, α

0
6, α

0
7, α

0
8) =−4

4

 ,

−3

3

 ,

−2

2

 ,

−1

1

 ,

 1

−1

 ,

 2

−2

 ,

 3

−3

 ,

 4

−4

 .

• DGP 6: Same as DGP 4, but K0 = 8 with the true coefficients

(α0
1, α

0
2, α

0
3, α

0
4, α

0
5, α

0
6, α

0
7, α

0
8) =


0.8

−4

4

 ,


0.6

−3

3

 ,


0.4

−2

2

 ,


0.2

−1

1

 ,


−0.2

1

−1

 ,


−0.4

2

−2

 ,


−0.6

3

−3

 ,


−0.8

4

−4


 .

The observations in DGPs 1–4 are drawn from three groups with the proportions N1/N = 0.4,

N2/N = 0.3 and N3/N = 0.3, and the observations in DGPs 5–6 are drawn with the proportions

N1/N = 0.3, Nk/N = 0.1 for k = 2, . . . , 8.

The idiosyncratic error process in DGP 1 is strong white noise, while DGP 2 and DGP 3 allow for

serial correlation and conditional heteroskedasticity, respectively. We apply PLS to estimate these

models. In DGP 4, the model contains a lagged dependent variable. We use both PLS and PGMM

to estimate the model, where the PGMM uses (yi,t−2, yi,t−3,∆xit,2,∆xit,3) as the instruments in

the first-differenced model. For DGP 5, we use PLS to estimate the model, and use both PLS and

PGMM to estimate the model in DGP 6. For DGP 6, the PGMM uses (yi,t−2, yi,t−3,∆xit,2,∆xit,3)

as the instruments in the first-differenced model.
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We note that when the group-specific parameters are not sufficiently separated from each other,

or when the time period is relatively small that can cause the preliminary estimates to be quite

different from the true parameter values, the PAGFL may produce trivial groups (groups that

contain few individuals and it would be hard to decide whether these small groups are the correct

groups or are generated due to misclassification). In such cases, following Park et al. (2007) and

Wang et al. (2018), to eliminate the trivial groups, we consider hierarchical clustering where we

allow the minimum number of observations within each group to be a certain percentage (e.g., 1%

or 10%) of the total number of individuals. Furthermore, we noticed that classifying individuals i

and j in a group when β̂i = β̂j might be too stringent. Consequently, this may cause the method to

produce trivial groups where the difference between the slope coefficients of the two groups is very

small. Hence, to ensure that the individuals classified in different groups are sufficiently separated

from each other, we classify individuals i and j in a group if ∥β̂i−β̂j∥ ≤ ϵtol where ϵtol is a prescribed

tolerance level (e.g., 0.001).

Table 1 reports simulation results of the selection consistency. It displays the empirical

probability that a particular group size from 1 to 5 is estimated when the true number of groups

is equal to three for DGPs 1–4. Additionally, it reports the empirical probability that a particular

group size from 6 to 10 is estimated when the true number of groups is equal to eight for DGPs

5 and 6. We use the PLS estimation for DGPs 1, 2, 3, and 5. Since DGPs 4, and 6 are dynamic

panels we report their results based on both the PLS and PGMM estimations.4 In the following

we summarize some important findings from these two tables. First, the simulations confirm that

increasing N and/or T improves the selection consistency substantially, and this is true for all

DGPs and both the PLS and PGMM estimations. Second, when T is small, the performance of our

method is better for DGPS in which the degree of heterogeneity is larger, for instance comparing

these empirical probabilities for DGP 1 and DGP 4, or the results of DGP 1 and DGP 5. Third, in

DGP 6 where the model is dynamic and the number of groups is large, the PLS method performs

better than the PGMM method. Fourth, for DGPs 2 and 3, where the errors, respectively, are

serially correlated and conditionally heteroscedastic, the PLS performs better even at small N and

T .

To measure the accuracy of classification, we report the normalized mutual information measure

in Table 2. Both PLS and PGMM very accurately estimate group classification. As expected,

4To save space, we only report the PLS results in the main text. The PGMM results are available in the Online
Supplemental Appendix.
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when the sample size is large enough, and/or the difference between the slope parameters across

the groups is relatively large, classification of PAGFL is accurate. In DGPs 4, and 6 PLS appears

to be more accurate than PGMM. The results of classification accuracy is higher for DGPs 2 and

3 that contain serially correlated and conditionally heteroscedastic errors, relative to DGP 1 where

the errors are independently identically distributed.

Table 3 provides the RMSE, and Bias of the proposed post-Lasso PAGFL, and the oracle

estimator.5 The PLS estimator for DGPs 4, and 6 is bias-corrected by using the Split-panel

jackknife method of Dhaene and Jochmans (2015). The RMSEs of the PAGFL get close to the

RMSEs of the oracle estimator when T increases. This demonstrates the practical relevance of the

oracle property. For DGPs 4, and 6 where the model is dynamic, the PLS performs better than

the PGMM.

7 Illustrations

We illustrate the PAGFL estimation and identification in an empirical application of unemployment

dynamics at the U.S. state level.6

7.1 Unemployment Dynamics at the U.S. State Level

In this application, we apply the PAGFL estimation and identification procedure to a model of

unemployment dynamics at the U.S. state level. Bun and Carree (2005) study this subject using a

dynamic panel data model that relates each of the states’ current unemployment rate (Uit) to the

unemployment rate and economic growth rate (Git) in the previous year. In addition to capture

state specific effects, their model includes both state individual intercepts ηi, and time effect θt.

Their model can be written as below

Uit = γUi,t−1 + βGi,t−1 + ηi + θt + ϵit, (7.1)

5We also compare the performance of PAGFL method with C-Lasso of Su et al. (2016) in the Online Supplemental
Appendix. The results reveal that the PAGFL estimator generally outperforms the C-Lasso.

6We also illustrate the PAGFL estimation and identification in two additional empirical applications of a cost system
of U.S. commercial banks, and forecasting output growth of 33 countries using macroeconomic and financial variables,
in the Online Supplemental Appendix.
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or equivalently

Uit − Ui,t−1 = (γ − 1)(Ui,t−1 − αi) + β(Gi,t−1 − δ) + θt + ϵit, (7.2)

where (1 − γ)αi − βδ = ηi. The model in (7.2) shows that changes in unemployment rate are

determined by two observable components: first, the adjustment of the unemployment rate toward

a natural or equilibrium rate of unemployment, αi, which is allowed to vary across states, second,

the deviation of the economic growth rate around a constant equilibrium. In addition, in the model

above, 1 − γ denotes the speed of adjustment of the unemployment rate toward the natural or

equilibrium rate. Further, it is expected to have β < 0, because a state that has relatively high

economic growth is more likely to have reduced unemployment rates compared with states in which

the economy is growing more slowly.

The model above imposes the assumption of heterogeneous intercepts and homogeneous slope

coefficients across states, and as pointed out by Campello et al. (2019), estimation methods of

such models can result in severely biased parameters and incorrect inferences. To avoid this issue,

alternatively, we consider the following latent group structure model

Uit = γgiUi,t−1 + βgiGi,t−1 + ηi + ϵit, (7.3)

where gi denotes group membership of state i. The model above equivalently can be written as

Uit − Ui,t−1 = (γgi − 1)(Ui,t−1 − αi) + βgi(Gi,t−1 − δgi) + ϵit. (7.4)

The data for the unemployment rate are taken from the U.S. Bureau of Labor Statistics

for 1976–2019 period, and the data for the states gross product are per capita personal income

(thousands of dollars) which are obtained from the U.S. Bureau of Economic Analysis deflated by

annual implicit price deflator.7 The economic growth rate is taken to be the relative growth of

the state product. Therefore, in our application N = 51, all U.S. states and Washington, DC, and

T = 43 because year 1976 is taken as the starting observation.

The PAGFL divides the states in three groups, where the group memberships are presented

in Table 4. Table 5 reports the estimated coefficient estimates based on full sample (ignoring

7Similar to Galvo and Kato (2014), we deflate the gross product data by the price deflator, hence we do not consider
a time effect in the model.
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parameter heterogeneity) and three groups with their corresponding standard deviations. All the

estimated coefficients of γ are highly significant among the four models under 1% level. The value

of γ in full sample and group 1 are almost the same and equal to 0.8, which implies an adjustment

rate of around 20% per year. The adjustment rate in group 3 is smaller around 14% and that of

group 2 is faster around 28%. The value of the full sample estimate of β equals -0.261, whereas

the value of the estimate in group 1 and group 2 are −0.716, and −0.567 and all are significant

under 1% level. This implies a somewhat stronger effect of economic growth on the change in

unemployment than other states in group 3.

8 Conclusion

This paper introduces two simple and computationally efficient shrinkage procedures to jointly

estimate and identify latent group structures in panel data via pairwise adaptive group fused Lasso

penalties: PLS estimation for models without endogenous regressors, and PGMM estimation for

models with endogeneity. Our proposed method does not require the knowledge of the true number

of groups a priori, since the number of groups are estimated within the estimation procedure. This

is a main advantages of our method relative to the existing methods in the literature. In addition,

if information regarding the minimum number of individuals within each group is available, our

method allows for hierarchical clustering to improve estimation accuracy. We develop the theoretical

results and show that the proposed procedure can (1) consistently estimate the true group structure,

hence (2) automatically and consistently estimate the true number of groups, (3) consistently

estimate the regression coefficients. In addition, the PLS estimator asymptotically achieves the

oracle property, but the PGMM oracle property is confined to some restrictive assumptions.

Our proposed method is applicable to models where the number of groups is either fixed or

divergent, thus our method can be applied to a large body of applications. We propose an ADMM

algorithm to implement our procedure, and then derive the convergence properties of the ADMM

algorithm. Monte Carlo simulations are conducted to examine the finite sample properties of the

proposed method which show that the approach has good finite-sample performance. Our empirical

application on the unemployment dynamics in the U.S. state level finds strong evidence that the

slope coefficients are heterogenous and can be conveniently classified into three distinct groups.
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Table 1: Frequency of Selecting K = 1, . . . , 5 Groups when K0 = 3, and Selecting K = 6, . . . , 10 Groups when K0 = 8

DGP 1 DGP 2 DGP 3

N T 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

50 20 0.00 0.02 0.94 0.04 0.00 0.00 0.00 0.99 0.02 0.00 0.00 0.00 1.00 0.01 0.00

50 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

50 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

100 20 0.00 0.00 0.98 0.03 0.00 0.00 0.00 0.99 0.02 0.00 0.00 0.00 1.00 0.01 0.00

100 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

200 20 0.00 0.00 0.98 0.02 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.99 0.01 0.00

200 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

DGP 4 DGP 5 DGP 6

N T 1 2 3 4 5 6 7 8 9 10 6 7 8 9 10

50 20 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.95 0.06 0.00 0.00 0.04 0.92 0.05 0.00

50 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

50 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

100 20 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.96 0.04 0.00 0.00 0.00 0.99 0.02 0.00

100 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

100 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

200 20 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

200 40 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

200 80 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

Note: This table reports the empirical probability of estimating a particular groups size from 1 to 5 when K0 = 3, and 6 to 10
when K0 = 10 via the PAGFL procedure. The results are based on the penalized least squares (PLS) method.
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Table 2: NMI Measure of Correct Classification

N T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6

50 20 0.82 0.84 0.94 1.00 0.99 0.99
50 40 0.97 0.98 1.00 1.00 1.00 1.00
50 80 1.00 1.00 1.00 1.00 1.00 1.00
100 20 0.81 0.84 0.93 0.99 0.99 0.99
100 40 0.96 0.97 0.99 1.00 1.00 1.00
100 80 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.81 0.83 0.92 0.99 0.99 0.99
200 40 0.96 0.97 0.99 1.00 1.00 1.00
200 80 1.00 1.00 1.00 1.00 1.00 1.00

Note: This table reports the NMI measure of classification accuracy. The
results are based on the penalized least squares (PLS) method.
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Table 3: Root Mean Squared Error and Bias of Coefficient Estimates

DGP 1 DGP 2 DGP 3

PAGFL Oracle PAGFL Oracle PAGFL Oracle

N T RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

50 20 0.154 0.002 0.054 0.002 0.140 -0.003 0.052 -0.003 0.082 0.000 0.042 0.000
50 40 0.056 0.001 0.037 0.001 0.055 0.000 0.037 0.000 0.032 -0.001 0.029 -0.001
50 80 0.027 0.001 0.027 0.001 0.025 -0.001 0.025 -0.001 0.021 0.000 0.021 0.000
100 20 0.146 0.003 0.037 0.003 0.132 -0.002 0.036 -0.002 0.084 0.000 0.030 0.000
100 40 0.056 0.000 0.027 0.000 0.050 0.000 0.027 0.000 0.026 0.001 0.021 0.001
100 80 0.021 0.000 0.019 0.000 0.020 0.001 0.019 0.001 0.015 0.000 0.014 0.000
200 20 0.141 0.000 0.027 0.000 0.130 0.001 0.025 0.001 0.081 0.001 0.021 0.001
200 40 0.053 0.000 0.018 0.000 0.051 0.000 0.019 0.000 0.022 0.001 0.014 0.001
200 80 0.015 0.000 0.013 0.000 0.015 0.000 0.013 0.000 0.010 0.000 0.010 0.000

DGP 4 DGP 5 DGP 6

PAGFL Oracle PAGFL Oracle PAGFL Oracle

N T RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

50 20 0.059 0.003 0.057 0.002 0.116 0.002 0.091 0.002 0.099 0.001 0.027 -0.001
50 40 0.037 0.001 0.037 0.001 0.064 0.002 0.064 0.002 0.075 0.001 0.075 0.002
50 80 0.025 0.000 0.025 0.000 0.046 -0.001 0.046 -0.001 0.052 0.001 0.052 0.000
100 20 0.044 0.004 0.037 0.004 0.091 -0.001 0.064 -0.001 0.083 -0.002 0.067 -0.001
100 40 0.024 0.001 0.024 0.001 0.045 -0.001 0.044 -0.001 0.046 0.001 0.046 0.001
100 80 0.018 0.001 0.018 0.001 0.031 0.000 0.031 0.000 0.032 0.001 0.032 0.001
200 20 0.033 0.003 0.026 0.003 0.078 -0.002 0.045 -0.002 0.061 0.000 0.043 0.000
200 40 0.018 0.002 0.018 0.002 0.033 0.000 0.032 0.000 0.030 0.000 0.030 0.000
200 80 0.012 0.000 0.012 0.000 0.022 0.000 0.022 0.000 0.021 0.000 0.021 0.000

Note: This table reports the root mean squared errors (RMSE) and Bias of the post-Lasso PAGFL, and the oracle estimator.
The results are based on the penalized least squares (PLS) method.
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Table 4: Group membership of the U.S. states in the Unemployment-Growth model

Group 1 Group 2 Group 3

Alabama Alaska Arkansas
Arizona Kansas Connecticut
California Montana Washington, DC
Colorado New Mexico Delaware
Florida Oklahoma Georgia
Hawaii Texas Iowa
Idaho Utah Illinois

Kentucky Wyoming Indiana
Louisiana Massachusetts
Missouri Maryland

Mississippi Maine
North Dakota Michigan

Nebraska Minnesota
New Hampshire North Carolina

Nevada New Jersey
New York Ohio
Washington Oregon
West Virginia Pennsylvania

Rhode Island
South Carolina
South Dakota
Tennessee
Virginia
Vermont
Wisconsin

Table 5: Estimation results of the Unemployment-Growth Model

PAGFL

Full Sample Group 1 Group 2 Group 3

γ̂ 0.800∗∗∗ 0.796∗∗∗ 0.720∗∗∗ 0.852∗∗∗

(0.020) (0.032) (0.030) (0.035)

β̂ −0.261∗∗∗ −0.716∗∗∗ −0.567∗∗∗ 0.028∗

(0.011) (0.018) (0.017) (0.019)

Note: ∗∗∗ 1% significant, ∗ 10% significant.
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